1h1v

From Proteopedia

Jump to: navigation, search
1h1v, resolution 2.99Å ()
Ligands: ,
Related: 1c0f, 1c0g, 1d4x, 1dej, 1dga, 1eqy, 1esv, 1kcq, 1sol, 1yag, 1yvn
Resources: FirstGlance, OCA, RCSB, PDBsum
Coordinates: save as pdb, mmCIF, xml


Contents

GELSOLIN G4-G6/ACTIN COMPLEX

Publication Abstract from PubMed

Gelsolin participates in the reorganization of the actin cytoskeleton that is required during such phenomena as cell movement, cytokinesis, and apoptosis. It consists of six structurally similar domains, G1-G6, which are arranged at resting intracellular levels of calcium ion so as to obscure the three actin-binding surfaces. Elevation of Ca(2+) concentrations releases latches within the constrained structure and produces large shifts in the relative positioning of the domains, permitting gelsolin to bind to and sever actin filaments. How Ca(2+) is able to activate gelsolin has been a major question concerning the function of this protein. We present the improved structure of the C-terminal half of gelsolin bound to monomeric actin at 3.0 A resolution. Two classes of Ca(2+)-binding site are evident on gelsolin: type 1 sites share coordination of Ca(2+) with actin, while type 2 sites are wholly contained within gelsolin. This structure of the complex reveals the locations of two novel metal ion-binding sites in domains G5 and G6, respectively. We identify both as type 2 sites. The absolute conservation of the type 2 calcium-ligating residues across the six domains of gelsolin suggests that this site exists in each of the domains. In total, gelsolin has the potential to bind eight calcium ions, two type 1 and six type 2. The function of the type 2 sites is to facilitate structural rearrangements within gelsolin as part of the activation and actin-binding and severing processes. We propose the novel type 2 site in G6 to be the critical site that initiates overall activation of gelsolin by releasing the tail latch that locks calcium-free gelsolin in a conformation unable to bind actin.

The calcium activation of gelsolin: insights from the 3A structure of the G4-G6/actin complex., Choe H, Burtnick LD, Mejillano M, Yin HL, Robinson RC, Choe S, J Mol Biol. 2002 Dec 6;324(4):691-702. PMID:12460571

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Disease

[ACTS_HUMAN] Defects in ACTA1 are the cause of nemaline myopathy type 3 (NEM3) [MIM:161800]. A form of nemaline myopathy. Nemaline myopathies are muscular disorders characterized by muscle weakness of varying severity and onset, and abnormal thread-or rod-like structures in muscle fibers on histologic examination. The phenotype at histological level is variable. Some patients present areas devoid of oxidative activity containg (cores) within myofibers. Core lesions are unstructured and poorly circumscribed.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] Defects in ACTA1 are a cause of myopathy, actin, congenital, with excess of thin myofilaments (MPCETM) [MIM:161800]. A congenital muscular disorder characterized at histological level by areas of sarcoplasm devoid of normal myofibrils and mitochondria, and replaced with dense masses of thin filaments. Central cores, rods, ragged red fibers, and necrosis are absent.[11] Defects in ACTA1 are a cause of congenital myopathy with fiber-type disproportion (CFTD) [MIM:255310]; also known as congenital fiber-type disproportion myopathy (CFTDM). CFTD is a genetically heterogeneous disorder in which there is relative hypotrophy of type 1 muscle fibers compared to type 2 fibers on skeletal muscle biopsy. However, these findings are not specific and can be found in many different myopathic and neuropathic conditions.[12] [13] [GELS_HUMAN] Defects in GSN are the cause of amyloidosis type 5 (AMYL5) [MIM:105120]; also known as familial amyloidosis Finnish type. AMYL5 is a hereditary generalized amyloidosis due to gelsolin amyloid deposition. It is typically characterized by cranial neuropathy and lattice corneal dystrophy. Most patients have modest involvement of internal organs, but severe systemic disease can develop in some individuals causing peripheral polyneuropathy, amyloid cardiomyopathy, and nephrotic syndrome leading to renal failure.[14] [15] [16] [17]

Function

[ACTS_HUMAN] Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. [GELS_HUMAN] Calcium-regulated, actin-modulating protein that binds to the plus (or barbed) ends of actin monomers or filaments, preventing monomer exchange (end-blocking or capping). It can promote the assembly of monomers into filaments (nucleation) as well as sever filaments already formed. Plays a role in ciliogenesis.[18]

About this Structure

1h1v is a 2 chain structure with sequence from Homo sapiens and Oryctolagus cuniculus. This structure supersedes the now removed PDB entry 1db0. Full crystallographic information is available from OCA.

See Also

Reference

  • Choe H, Burtnick LD, Mejillano M, Yin HL, Robinson RC, Choe S. The calcium activation of gelsolin: insights from the 3A structure of the G4-G6/actin complex. J Mol Biol. 2002 Dec 6;324(4):691-702. PMID:12460571
  1. Nowak KJ, Wattanasirichaigoon D, Goebel HH, Wilce M, Pelin K, Donner K, Jacob RL, Hubner C, Oexle K, Anderson JR, Verity CM, North KN, Iannaccone ST, Muller CR, Nurnberg P, Muntoni F, Sewry C, Hughes I, Sutphen R, Lacson AG, Swoboda KJ, Vigneron J, Wallgren-Pettersson C, Beggs AH, Laing NG. Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy. Nat Genet. 1999 Oct;23(2):208-12. PMID:10508519 doi:10.1038/13837
  2. Ilkovski B, Cooper ST, Nowak K, Ryan MM, Yang N, Schnell C, Durling HJ, Roddick LG, Wilkinson I, Kornberg AJ, Collins KJ, Wallace G, Gunning P, Hardeman EC, Laing NG, North KN. Nemaline myopathy caused by mutations in the muscle alpha-skeletal-actin gene. Am J Hum Genet. 2001 Jun;68(6):1333-43. Epub 2001 Apr 27. PMID:11333380 doi:S0002-9297(07)61044-1
  3. Jungbluth H, Sewry CA, Brown SC, Nowak KJ, Laing NG, Wallgren-Pettersson C, Pelin K, Manzur AY, Mercuri E, Dubowitz V, Muntoni F. Mild phenotype of nemaline myopathy with sleep hypoventilation due to a mutation in the skeletal muscle alpha-actin (ACTA1) gene. Neuromuscul Disord. 2001 Jan;11(1):35-40. PMID:11166164
  4. Agrawal PB, Strickland CD, Midgett C, Morales A, Newburger DE, Poulos MA, Tomczak KK, Ryan MM, Iannaccone ST, Crawford TO, Laing NG, Beggs AH. Heterogeneity of nemaline myopathy cases with skeletal muscle alpha-actin gene mutations. Ann Neurol. 2004 Jul;56(1):86-96. PMID:15236405 doi:10.1002/ana.20157
  5. Ilkovski B, Nowak KJ, Domazetovska A, Maxwell AL, Clement S, Davies KE, Laing NG, North KN, Cooper ST. Evidence for a dominant-negative effect in ACTA1 nemaline myopathy caused by abnormal folding, aggregation and altered polymerization of mutant actin isoforms. Hum Mol Genet. 2004 Aug 15;13(16):1727-43. Epub 2004 Jun 15. PMID:15198992 doi:10.1093/hmg/ddh185
  6. Kaindl AM, Ruschendorf F, Krause S, Goebel HH, Koehler K, Becker C, Pongratz D, Muller-Hocker J, Nurnberg P, Stoltenburg-Didinger G, Lochmuller H, Huebner A. Missense mutations of ACTA1 cause dominant congenital myopathy with cores. J Med Genet. 2004 Nov;41(11):842-8. PMID:15520409 doi:10.1136/jmg.2004.020271
  7. Ohlsson M, Tajsharghi H, Darin N, Kyllerman M, Oldfors A. Follow-up of nemaline myopathy in two patients with novel mutations in the skeletal muscle alpha-actin gene (ACTA1). Neuromuscul Disord. 2004 Sep;14(8-9):471-5. PMID:15336687 doi:10.1016/j.nmd.2004.05.016
  8. Hutchinson DO, Charlton A, Laing NG, Ilkovski B, North KN. Autosomal dominant nemaline myopathy with intranuclear rods due to mutation of the skeletal muscle ACTA1 gene: clinical and pathological variability within a kindred. Neuromuscul Disord. 2006 Feb;16(2):113-21. Epub 2006 Jan 19. PMID:16427282 doi:10.1016/j.nmd.2005.11.004
  9. D'Amico A, Graziano C, Pacileo G, Petrini S, Nowak KJ, Boldrini R, Jacques A, Feng JJ, Porfirio B, Sewry CA, Santorelli FM, Limongelli G, Bertini E, Laing N, Marston SB. Fatal hypertrophic cardiomyopathy and nemaline myopathy associated with ACTA1 K336E mutation. Neuromuscul Disord. 2006 Oct;16(9-10):548-52. Epub 2006 Sep 1. PMID:16945537 doi:10.1016/j.nmd.2006.07.005
  10. Domazetovska A, Ilkovski B, Kumar V, Valova VA, Vandebrouck A, Hutchinson DO, Robinson PJ, Cooper ST, Sparrow JC, Peckham M, North KN. Intranuclear rod myopathy: molecular pathogenesis and mechanisms of weakness. Ann Neurol. 2007 Dec;62(6):597-608. PMID:17705262 doi:10.1002/ana.21200
  11. Nowak KJ, Wattanasirichaigoon D, Goebel HH, Wilce M, Pelin K, Donner K, Jacob RL, Hubner C, Oexle K, Anderson JR, Verity CM, North KN, Iannaccone ST, Muller CR, Nurnberg P, Muntoni F, Sewry C, Hughes I, Sutphen R, Lacson AG, Swoboda KJ, Vigneron J, Wallgren-Pettersson C, Beggs AH, Laing NG. Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy. Nat Genet. 1999 Oct;23(2):208-12. PMID:10508519 doi:10.1038/13837
  12. Laing NG, Clarke NF, Dye DE, Liyanage K, Walker KR, Kobayashi Y, Shimakawa S, Hagiwara T, Ouvrier R, Sparrow JC, Nishino I, North KN, Nonaka I. Actin mutations are one cause of congenital fibre type disproportion. Ann Neurol. 2004 Nov;56(5):689-94. PMID:15468086 doi:10.1002/ana.20260
  13. Clarke NF, Ilkovski B, Cooper S, Valova VA, Robinson PJ, Nonaka I, Feng JJ, Marston S, North K. The pathogenesis of ACTA1-related congenital fiber type disproportion. Ann Neurol. 2007 Jun;61(6):552-61. PMID:17387733 doi:10.1002/ana.21112
  14. Haltia M, Prelli F, Ghiso J, Kiuru S, Somer H, Palo J, Frangione B. Amyloid protein in familial amyloidosis (Finnish type) is homologous to gelsolin, an actin-binding protein. Biochem Biophys Res Commun. 1990 Mar 30;167(3):927-32. PMID:2157434
  15. Maury CP, Alli K, Baumann M. Finnish hereditary amyloidosis. Amino acid sequence homology between the amyloid fibril protein and human plasma gelsoline. FEBS Lett. 1990 Jan 15;260(1):85-7. PMID:2153578
  16. Ghiso J, Haltia M, Prelli F, Novello J, Frangione B. Gelsolin variant (Asn-187) in familial amyloidosis, Finnish type. Biochem J. 1990 Dec 15;272(3):827-30. PMID:2176481
  17. de la Chapelle A, Tolvanen R, Boysen G, Santavy J, Bleeker-Wagemakers L, Maury CP, Kere J. Gelsolin-derived familial amyloidosis caused by asparagine or tyrosine substitution for aspartic acid at residue 187. Nat Genet. 1992 Oct;2(2):157-60. PMID:1338910 doi:http://dx.doi.org/10.1038/ng1092-157
  18. Kim J, Lee JE, Heynen-Genel S, Suyama E, Ono K, Lee K, Ideker T, Aza-Blanc P, Gleeson JG. Functional genomic screen for modulators of ciliogenesis and cilium length. Nature. 2010 Apr 15;464(7291):1048-51. doi: 10.1038/nature08895. PMID:20393563 doi:10.1038/nature08895

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools