1hk4

From Proteopedia

Jump to: navigation, search
1hk4, resolution 2.40Å ()
Ligands: ,
Related: 1ao6, 1bj5, 1bke, 1bm0, 1e78, 1e7a, 1e7b, 1e7c, 1e7e, 1e7f, 1e7g, 1e7h, 1e7i, 1gni, 1gnj, 1h9z, 1ha2, 1o9x, 1uor, 1hk2, 1hk3, 1hk1, 1hk5
Resources: FirstGlance, OCA, RCSB, PDBsum
Coordinates: save as pdb, mmCIF, xml


Contents

HUMAN SERUM ALBUMIN COMPLEXED WITH THYROXINE (3,3',5,5'-TETRAIODO-L-THYRONINE) AND MYRISTIC ACID (TETRADECANOIC ACID)

Publication Abstract from PubMed

Human serum albumin (HSA) is the major protein component of blood plasma and serves as a transporter for thyroxine and other hydrophobic compounds such as fatty acids and bilirubin. We report here a structural characterization of HSA-thyroxine interactions. Using crystallographic analyses we have identified four binding sites for thyroxine on HSA distributed in subdomains IIA, IIIA, and IIIB. Mutation of residue R218 within subdomain IIA greatly enhances the affinity for thyroxine and causes the elevated serum thyroxine levels associated with familial dysalbuminemic hyperthyroxinemia (FDH). Structural analysis of two FDH mutants of HSA (R218H and R218P) shows that this effect arises because substitution of R218, which contacts the hormone bound in subdomain IIA, produces localized conformational changes to relax steric restrictions on thyroxine binding at this site. We have also found that, although fatty acid binding competes with thyroxine at all four sites, it induces conformational changes that create a fifth hormone-binding site in the cleft between domains I and III, at least 9 A from R218. These structural observations are consistent with binding data showing that HSA retains a high-affinity site for thyroxine in the presence of excess fatty acid that is insensitive to FDH mutations.

Structural basis of albumin-thyroxine interactions and familial dysalbuminemic hyperthyroxinemia., Petitpas I, Petersen CE, Ha CE, Bhattacharya AA, Zunszain PA, Ghuman J, Bhagavan NV, Curry S, Proc Natl Acad Sci U S A. 2003 May 27;100(11):6440-5. Epub 2003 May 12. PMID:12743361

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Disease

[ALBU_HUMAN] Defects in ALB are a cause of familial dysalbuminemic hyperthyroxinemia (FDH) [MIM:103600]. FDH is a form of euthyroid hyperthyroxinemia that is due to increased affinity of ALB for T(4). It is the most common cause of inherited euthyroid hyperthyroxinemia in Caucasian population.[1][2][3][4]

Function

[ALBU_HUMAN] Serum albumin, the main protein of plasma, has a good binding capacity for water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs. Its main function is the regulation of the colloidal osmotic pressure of blood. Major zinc transporter in plasma, typically binds about 80% of all plasma zinc.[5]

About this Structure

1hk4 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.

See Also

Reference

  • Petitpas I, Petersen CE, Ha CE, Bhattacharya AA, Zunszain PA, Ghuman J, Bhagavan NV, Curry S. Structural basis of albumin-thyroxine interactions and familial dysalbuminemic hyperthyroxinemia. Proc Natl Acad Sci U S A. 2003 May 27;100(11):6440-5. Epub 2003 May 12. PMID:12743361 doi:http://dx.doi.org/10.1073/pnas.1137188100
  1. Sunthornthepvarakul T, Angkeow P, Weiss RE, Hayashi Y, Refetoff S. An identical missense mutation in the albumin gene results in familial dysalbuminemic hyperthyroxinemia in 8 unrelated families. Biochem Biophys Res Commun. 1994 Jul 29;202(2):781-7. PMID:8048949
  2. Rushbrook JI, Becker E, Schussler GC, Divino CM. Identification of a human serum albumin species associated with familial dysalbuminemic hyperthyroxinemia. J Clin Endocrinol Metab. 1995 Feb;80(2):461-7. PMID:7852505
  3. Wada N, Chiba H, Shimizu C, Kijima H, Kubo M, Koike T. A novel missense mutation in codon 218 of the albumin gene in a distinct phenotype of familial dysalbuminemic hyperthyroxinemia in a Japanese kindred. J Clin Endocrinol Metab. 1997 Oct;82(10):3246-50. PMID:9329347
  4. Sunthornthepvarakul T, Likitmaskul S, Ngowngarmratana S, Angsusingha K, Kitvitayasak S, Scherberg NH, Refetoff S. Familial dysalbuminemic hypertriiodothyroninemia: a new, dominantly inherited albumin defect. J Clin Endocrinol Metab. 1998 May;83(5):1448-54. PMID:9589637
  5. Lu J, Stewart AJ, Sadler PJ, Pinheiro TJ, Blindauer CA. Albumin as a zinc carrier: properties of its high-affinity zinc-binding site. Biochem Soc Trans. 2008 Dec;36(Pt 6):1317-21. doi: 10.1042/BST0361317. PMID:19021548 doi:10.1042/BST0361317

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools