First time at Proteopedia? Click on the green links: they change the 3D image. Click and drag the molecules. Proteopedia is a 3D, interactive encyclopedia of proteins, RNA, DNA and other molecules. With a free user account, you can edit pages in Proteopedia. Visit the Main Page to learn more.

1j1d

From Proteopedia

Jump to: navigation, search
1j1d, resolution 2.61Å ()
Ligands:
Related: 1j1e
Resources: FirstGlance, OCA, RCSB, PDBsum
Coordinates: save as pdb, mmCIF, xml


Contents

Crystal structure of the 46kDa domain of human cardiac troponin in the Ca2+ saturated form

Publication Abstract from PubMed

Troponin is essential in Ca(2+) regulation of skeletal and cardiac muscle contraction. It consists of three subunits (TnT, TnC and TnI) and, together with tropomyosin, is located on the actin filament. Here we present crystal structures of the core domains (relative molecular mass of 46,000 and 52,000) of human cardiac troponin in the Ca(2+)-saturated form. Analysis of the four-molecule structures reveals that the core domain is further divided into structurally distinct subdomains that are connected by flexible linkers, making the entire molecule highly flexible. The alpha-helical coiled-coil formed between TnT and TnI is integrated in a rigid and asymmetric structure (about 80 angstrom long), the IT arm, which bridges putative tropomyosin-anchoring regions. The structures of the troponin ternary complex imply that Ca(2+) binding to the regulatory site of TnC removes the carboxy-terminal portion of TnI from actin, thereby altering the mobility and/or flexibility of troponin and tropomyosin on the actin filament.

Structure of the core domain of human cardiac troponin in the Ca(2+)-saturated form., Takeda S, Yamashita A, Maeda K, Maeda Y, Nature. 2003 Jul 3;424(6944):35-41. PMID:12840750

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Disease

[TNNC1_HUMAN] Defects in TNNC1 are the cause of cardiomyopathy dilated type 1Z (CMD1Z) [MIM:611879]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.[1] Defects in TNNC1 are the cause of familial hypertrophic cardiomyopathy type 13 (CMH13) [MIM:613243]. A hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intrafamilial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death.[2][3][4][5] [TNNI3_HUMAN] Defects in TNNI3 are the cause of familial hypertrophic cardiomyopathy type 7 (CMH7) [MIM:613690]. Familial hypertrophic cardiomyopathy is a hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intrafamilial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death.[6][7][8][9][10] Defects in TNNI3 are the cause of familial restrictive cardiomyopathy type 1 (RCM1) [MIM:115210]. RCM1 is a heart muscle disorder characterized by impaired filling of the ventricles with reduced diastolic volume, in the presence of normal or near normal wall thickness and systolic function.[11] Defects in TNNI3 are the cause of cardiomyopathy dilated type 2A (CMD2A) [MIM:611880]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.[12] Defects in TNNI3 are the cause of cardiomyopathy dilated type 1FF (CMD1FF) [MIM:613286]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death. [TNNT2_HUMAN] Defects in TNNT2 are the cause of familial hypertrophic cardiomyopathy type 2 (CMH2) [MIM:115195]. Familial hypertrophic cardiomyopathy is a hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intrafamilial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death.[13][14][15][16][17][:][18][19][20][21][22][23][24][25] Defects in TNNT2 are the cause of cardiomyopathy dilated type 1D (CMD1D) [MIM:601494]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.[26][27][28][29][30] Defects in TNNT2 are the cause of familial restrictive cardiomyopathy type 3 (RCM3) [MIM:612422]. Restrictive cardiomyopathy is a heart disorder characterized by impaired filling of the ventricles with reduced diastolic volume, in the presence of normal or near normal wall thickness and systolic function.[31]

Function

[TNNC1_HUMAN] Troponin is the central regulatory protein of striated muscle contraction. Tn consists of three components: Tn-I which is the inhibitor of actomyosin ATPase, Tn-T which contains the binding site for tropomyosin and Tn-C. The binding of calcium to Tn-C abolishes the inhibitory action of Tn on actin filaments. [TNNI3_HUMAN] Troponin I is the inhibitory subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity. [TNNT2_HUMAN] Troponin T is the tropomyosin-binding subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity.

About this Structure

1j1d is a 6 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.

See Also

Reference

  1. Mogensen J, Murphy RT, Shaw T, Bahl A, Redwood C, Watkins H, Burke M, Elliott PM, McKenna WJ. Severe disease expression of cardiac troponin C and T mutations in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2004 Nov 16;44(10):2033-40. PMID:15542288 doi:S0735-1097(04)01700-0
  2. Hoffmann B, Schmidt-Traub H, Perrot A, Osterziel KJ, Gessner R. First mutation in cardiac troponin C, L29Q, in a patient with hypertrophic cardiomyopathy. Hum Mutat. 2001 Jun;17(6):524. PMID:11385718 doi:10.1002/humu.1143
  3. Schmidtmann A, Lindow C, Villard S, Heuser A, Mugge A, Gessner R, Granier C, Jaquet K. Cardiac troponin C-L29Q, related to hypertrophic cardiomyopathy, hinders the transduction of the protein kinase A dependent phosphorylation signal from cardiac troponin I to C. FEBS J. 2005 Dec;272(23):6087-97. PMID:16302972 doi:10.1111/j.1742-4658.2005.05001.x
  4. Landstrom AP, Parvatiyar MS, Pinto JR, Marquardt ML, Bos JM, Tester DJ, Ommen SR, Potter JD, Ackerman MJ. Molecular and functional characterization of novel hypertrophic cardiomyopathy susceptibility mutations in TNNC1-encoded troponin C. J Mol Cell Cardiol. 2008 Aug;45(2):281-8. doi: 10.1016/j.yjmcc.2008.05.003. Epub , 2008 May 11. PMID:18572189 doi:10.1016/j.yjmcc.2008.05.003
  5. Pinto JR, Parvatiyar MS, Jones MA, Liang J, Ackerman MJ, Potter JD. A functional and structural study of troponin C mutations related to hypertrophic cardiomyopathy. J Biol Chem. 2009 Jul 10;284(28):19090-100. doi: 10.1074/jbc.M109.007021. Epub, 2009 May 12. PMID:19439414 doi:10.1074/jbc.M109.007021
  6. Kimura A, Harada H, Park JE, Nishi H, Satoh M, Takahashi M, Hiroi S, Sasaoka T, Ohbuchi N, Nakamura T, Koyanagi T, Hwang TH, Choo JA, Chung KS, Hasegawa A, Nagai R, Okazaki O, Nakamura H, Matsuzaki M, Sakamoto T, Toshima H, Koga Y, Imaizumi T, Sasazuki T. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet. 1997 Aug;16(4):379-82. PMID:9241277 doi:10.1038/ng0897-379
  7. Niimura H, Patton KK, McKenna WJ, Soults J, Maron BJ, Seidman JG, Seidman CE. Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly. Circulation. 2002 Jan 29;105(4):446-51. PMID:11815426
  8. Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C, Benaiche A, Isnard R, Dubourg O, Burban M, Gueffet JP, Millaire A, Desnos M, Schwartz K, Hainque B, Komajda M. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation. 2003 May 6;107(17):2227-32. Epub 2003 Apr 21. PMID:12707239 doi:10.1161/01.CIR.0000066323.15244.54
  9. Erdmann J, Daehmlow S, Wischke S, Senyuva M, Werner U, Raible J, Tanis N, Dyachenko S, Hummel M, Hetzer R, Regitz-Zagrosek V. Mutation spectrum in a large cohort of unrelated consecutive patients with hypertrophic cardiomyopathy. Clin Genet. 2003 Oct;64(4):339-49. PMID:12974739
  10. Ingles J, Doolan A, Chiu C, Seidman J, Seidman C, Semsarian C. Compound and double mutations in patients with hypertrophic cardiomyopathy: implications for genetic testing and counselling. J Med Genet. 2005 Oct;42(10):e59. PMID:16199542 doi:10.1136/jmg.2005.033886
  11. Mogensen J, Kubo T, Duque M, Uribe W, Shaw A, Murphy R, Gimeno JR, Elliott P, McKenna WJ. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J Clin Invest. 2003 Jan;111(2):209-16. PMID:12531876 doi:10.1172/JCI16336
  12. Murphy RT, Mogensen J, Shaw A, Kubo T, Hughes S, McKenna WJ. Novel mutation in cardiac troponin I in recessive idiopathic dilated cardiomyopathy. Lancet. 2004 Jan 31;363(9406):371-2. PMID:15070570 doi:10.1016/S0140-6736(04)15468-8
  13. Gerull B, Osterziel KJ, Witt C, Dietz R, Thierfelder L. A rapid protocol for cardiac troponin T gene mutation detection in familial hypertrophic cardiomyopathy. Hum Mutat. 1998;11(2):179-82. PMID:9482583 doi:<179::AID-HUMU12>3.0.CO;2-W 10.1002/(SICI)1098-1004(1998)11:2<179::AID-HUMU12>3.0.CO;2-W
  14. Thierfelder L, Watkins H, MacRae C, Lamas R, McKenna W, Vosberg HP, Seidman JG, Seidman CE. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell. 1994 Jun 3;77(5):701-12. PMID:8205619
  15. Watkins H, McKenna WJ, Thierfelder L, Suk HJ, Anan R, O'Donoghue A, Spirito P, Matsumori A, Moravec CS, Seidman JG, et al.. Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med. 1995 Apr 20;332(16):1058-64. PMID:7898523
  16. Forissier JF, Carrier L, Farza H, Bonne G, Bercovici J, Richard P, Hainque B, Townsend PJ, Yacoub MH, Faure S, Dubourg O, Millaire A, Hagege AA, Desnos M, Komajda M, Schwartz K. Codon 102 of the cardiac troponin T gene is a putative hot spot for mutations in familial hypertrophic cardiomyopathy. Circulation. 1996 Dec 15;94(12):3069-73. PMID:8989109
  17. Moolman JC, Corfield VA, Posen B, Ngumbela K, Seidman C, Brink PA, Watkins H. Sudden death due to troponin T mutations. J Am Coll Cardiol. 1997 Mar 1;29(3):549-55. PMID:9060892
  18. Varnava A, Baboonian C, Davison F, de Cruz L, Elliott PM, Davies MJ, McKenna WJ. A new mutation of the cardiac troponin T gene causing familial hypertrophic cardiomyopathy without left ventricular hypertrophy. Heart. 1999 Nov;82(5):621-4. PMID:10525521
  19. Nakajima-Taniguchi C, Matsui H, Fujio Y, Nagata S, Kishimoto T, Yamauchi-Takihara K. Novel missense mutation in cardiac troponin T gene found in Japanese patient with hypertrophic cardiomyopathy. J Mol Cell Cardiol. 1997 Feb;29(2):839-43. PMID:9140840 doi:S0022-2828(96)90322-3
  20. Ho CY, Lever HM, DeSanctis R, Farver CF, Seidman JG, Seidman CE. Homozygous mutation in cardiac troponin T: implications for hypertrophic cardiomyopathy. Circulation. 2000 Oct 17;102(16):1950-5. PMID:11034944
  21. Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C, Benaiche A, Isnard R, Dubourg O, Burban M, Gueffet JP, Millaire A, Desnos M, Schwartz K, Hainque B, Komajda M. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation. 2003 May 6;107(17):2227-32. Epub 2003 Apr 21. PMID:12707239 doi:10.1161/01.CIR.0000066323.15244.54
  22. Erdmann J, Daehmlow S, Wischke S, Senyuva M, Werner U, Raible J, Tanis N, Dyachenko S, Hummel M, Hetzer R, Regitz-Zagrosek V. Mutation spectrum in a large cohort of unrelated consecutive patients with hypertrophic cardiomyopathy. Clin Genet. 2003 Oct;64(4):339-49. PMID:12974739
  23. Song L, Zou Y, Wang J, Wang Z, Zhen Y, Lou K, Zhang Q, Wang X, Wang H, Li J, Hui R. Mutations profile in Chinese patients with hypertrophic cardiomyopathy. Clin Chim Acta. 2005 Jan;351(1-2):209-16. PMID:15563892 doi:10.1016/j.cccn.2004.09.016
  24. Ingles J, Doolan A, Chiu C, Seidman J, Seidman C, Semsarian C. Compound and double mutations in patients with hypertrophic cardiomyopathy: implications for genetic testing and counselling. J Med Genet. 2005 Oct;42(10):e59. PMID:16199542 doi:10.1136/jmg.2005.033886
  25. Millat G, Bouvagnet P, Chevalier P, Sebbag L, Dulac A, Dauphin C, Jouk PS, Delrue MA, Thambo JB, Le Metayer P, Seronde MF, Faivre L, Eicher JC, Rousson R. Clinical and mutational spectrum in a cohort of 105 unrelated patients with dilated cardiomyopathy. Eur J Med Genet. 2011 Nov-Dec;54(6):e570-5. doi: 10.1016/j.ejmg.2011.07.005. Epub, 2011 Aug 4. PMID:21846512 doi:10.1016/j.ejmg.2011.07.005
  26. Millat G, Bouvagnet P, Chevalier P, Sebbag L, Dulac A, Dauphin C, Jouk PS, Delrue MA, Thambo JB, Le Metayer P, Seronde MF, Faivre L, Eicher JC, Rousson R. Clinical and mutational spectrum in a cohort of 105 unrelated patients with dilated cardiomyopathy. Eur J Med Genet. 2011 Nov-Dec;54(6):e570-5. doi: 10.1016/j.ejmg.2011.07.005. Epub, 2011 Aug 4. PMID:21846512 doi:10.1016/j.ejmg.2011.07.005
  27. Kamisago M, Sharma SD, DePalma SR, Solomon S, Sharma P, McDonough B, Smoot L, Mullen MP, Woolf PK, Wigle ED, Seidman JG, Seidman CE. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N Engl J Med. 2000 Dec 7;343(23):1688-96. PMID:11106718 doi:10.1056/NEJM200012073432304
  28. Li D, Czernuszewicz GZ, Gonzalez O, Tapscott T, Karibe A, Durand JB, Brugada R, Hill R, Gregoritch JM, Anderson JL, Quinones M, Bachinski LL, Roberts R. Novel cardiac troponin T mutation as a cause of familial dilated cardiomyopathy. Circulation. 2001 Oct 30;104(18):2188-93. PMID:11684629
  29. Mogensen J, Murphy RT, Shaw T, Bahl A, Redwood C, Watkins H, Burke M, Elliott PM, McKenna WJ. Severe disease expression of cardiac troponin C and T mutations in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2004 Nov 16;44(10):2033-40. PMID:15542288 doi:S0735-1097(04)01700-0
  30. Villard E, Duboscq-Bidot L, Charron P, Benaiche A, Conraads V, Sylvius N, Komajda M. Mutation screening in dilated cardiomyopathy: prominent role of the beta myosin heavy chain gene. Eur Heart J. 2005 Apr;26(8):794-803. Epub 2005 Mar 15. PMID:15769782 doi:ehi193
  31. Peddy SB, Vricella LA, Crosson JE, Oswald GL, Cohn RD, Cameron DE, Valle D, Loeys BL. Infantile restrictive cardiomyopathy resulting from a mutation in the cardiac troponin T gene. Pediatrics. 2006 May;117(5):1830-3. PMID:16651346 doi:10.1542/peds.2005-2301

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools