From Proteopedia

Jump to: navigation, search
1m27, resolution 2.50Å ()
Activity: Transferase, with EC number and and
Related: 1d4t
Resources: FirstGlance, OCA, RCSB, PDBsum
Coordinates: save as pdb, mmCIF, xml


Crystal structure of SAP/FynSH3/SLAM ternary complex

Publication Abstract from PubMed

SAP (SLAM-associated protein) is a small lymphocyte-specific signalling molecule that is defective or absent in patients with X-linked lymphoproliferative syndrome (XLP). Consistent with its single src homology 2 (SH2) domain architecture and unusually high affinity for SLAM (also called CD150), SAP has been suggested to function by blocking binding of SHP-2 or other SH2-containing signalling proteins to SLAM receptors. Additionally, SAP has recently been shown to be required for recruitment and activation of the Src-family kinase FynT after SLAM ligation. This signalling 'adaptor' function has been difficult to conceptualize, because unlike typical SH2-adaptor proteins, SAP contains only a single SH2 domain and lacks other recognized protein interaction domains or motifs. Here, we show that the SAP SH2 domain binds to the SH3 domain of FynT and directly couples FynT to SLAM. The crystal structure of a ternary SLAM-SAP-Fyn-SH3 complex reveals that SAP binds the FynT SH3 domain through a surface-surface interaction that does not involve canonical SH3 or SH2 binding interactions. The observed mode of binding to the Fyn-SH3 domain is expected to preclude the auto-inhibited conformation of Fyn, thereby promoting activation of the kinase after recruitment. These findings broaden our understanding of the functional repertoire of SH3 and SH2 domains.

SAP couples Fyn to SLAM immune receptors., Chan B, Lanyi A, Song HK, Griesbach J, Simarro-Grande M, Poy F, Howie D, Sumegi J, Terhorst C, Eck MJ, Nat Cell Biol. 2003 Feb;5(2):155-60. PMID:12545174

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.


[SH21A_HUMAN] Defects in SH2D1A are a cause of lymphoproliferative syndrome X-linked type 1 (XLP1) [MIM:308240]; also known as X-linked lymphoproliferative disease (XLPD) or Duncan disease. XLP is a rare immunodeficiency characterized by extreme susceptibility to infection with Epstein-Barr virus (EBV). Symptoms include severe or fatal mononucleosis, acquired hypogammaglobulinemia, pancytopenia and malignant lymphoma.[1][2][3][4][5][6][7][8][9][10]


[SH21A_HUMAN] Inhibitor of the SLAM self-association. Acts by blocking recruitment of the SH2-domain-containing signal-transduction molecule SHP-2 to a docking site in the SLAM cytoplasmic region. Mediates interaction between FYN and SLAMF1. May also regulate the activity of the neurotrophin receptors NTRK1, NTRK2 and NTRK3. [FYN_HUMAN] Non-receptor tyrosine-protein kinase that plays a role in many biological processes including regulation of cell growth and survival, cell adhesion, integrin-mediated signaling, cytoskeletal remodeling, cell motility, immune response and axon guidance. Inactive FYN is phosphorylated on its C-terminal tail within the catalytic domain. Following activation by PKA, the protein subsequently associates with PTK2/FAK1, allowing PTK2/FAK1 phosphorylation, activation and targeting to focal adhesions. Involved in the regulation of cell adhesion and motility through phosphorylation of CTNNB1 (beta-catenin) and CTNND1 (delta-catenin). Regulates cytoskeletal remodeling by phosphorylating several proteins including the actin regulator WAS and the microtubule-associated proteins MAP2 and MAPT. Promotes cell survival by phosphorylating AGAP2/PIKE-A and preventing its apoptotic cleavage. Participates in signal transduction pathways that regulate the integrity of the glomerular slit diaphragm (an essential part of the glomerular filter of the kidney) by phosphorylating several slit diaphragm components including NPHS1, KIRREL and TRPC6. Plays a role in neural processes by phosphorylating DPYSL2, a multifunctional adapter protein within the central nervous system, ARHGAP32, a regulator for Rho family GTPases implicated in various neural functions, and SNCA, a small pre-synaptic protein. Participates in the downstream signaling pathways that lead to T-cell differentiation and proliferation following T-cell receptor (TCR) stimulation. Also participates in negative feedback regulation of TCR signaling through phosphorylation of PAG1, thereby promoting interaction between PAG1 and CSK and recruitment of CSK to lipid rafts. CSK maintains LCK and FYN in an inactive form. Promotes CD28-induced phosphorylation of VAV1.[11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29] [SLAF1_HUMAN] High-affinity self-ligand important in bidirectional T-cell to B-cell stimulation. SLAM-induced signal-transduction events in T-lymphocytes are different from those in B-cells. Two modes of SLAM signaling are likely to exist: one in which the inhibitor SH2D1A acts as a negative regulator and another in which protein-tyrosine phosphatase 2C (PTPN11)-dependent signal transduction operates.

About this Structure

1m27 is a 3 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.

See Also


  • Chan B, Lanyi A, Song HK, Griesbach J, Simarro-Grande M, Poy F, Howie D, Sumegi J, Terhorst C, Eck MJ. SAP couples Fyn to SLAM immune receptors. Nat Cell Biol. 2003 Feb;5(2):155-60. PMID:12545174 doi:10.1038/ncb920
  1. Morra M, Simarro-Grande M, Martin M, Chen AS, Lanyi A, Silander O, Calpe S, Davis J, Pawson T, Eck MJ, Sumegi J, Engel P, Li SC, Terhorst C. Characterization of SH2D1A missense mutations identified in X-linked lymphoproliferative disease patients. J Biol Chem. 2001 Sep 28;276(39):36809-16. Epub 2001 Jul 26. PMID:11477068 doi:10.1074/jbc.M101305200
  2. Coffey AJ, Brooksbank RA, Brandau O, Oohashi T, Howell GR, Bye JM, Cahn AP, Durham J, Heath P, Wray P, Pavitt R, Wilkinson J, Leversha M, Huckle E, Shaw-Smith CJ, Dunham A, Rhodes S, Schuster V, Porta G, Yin L, Serafini P, Sylla B, Zollo M, Franco B, Bolino A, Seri M, Lanyi A, Davis JR, Webster D, Harris A, Lenoir G, de St Basile G, Jones A, Behloradsky BH, Achatz H, Murken J, Fassler R, Sumegi J, Romeo G, Vaudin M, Ross MT, Meindl A, Bentley DR. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet. 1998 Oct;20(2):129-35. PMID:9771704 doi:10.1038/2424
  3. Hwang PM, Li C, Morra M, Lillywhite J, Muhandiram DR, Gertler F, Terhorst C, Kay LE, Pawson T, Forman-Kay JD, Li SC. A "three-pronged" binding mechanism for the SAP/SH2D1A SH2 domain: structural basis and relevance to the XLP syndrome. EMBO J. 2002 Feb 1;21(3):314-23. PMID:11823424 doi:10.1093/emboj/21.3.314
  4. Yin L, Ferrand V, Lavoue MF, Hayoz D, Philippe N, Souillet G, Seri M, Giacchino R, Castagnola E, Hodgson S, Sylla BS, Romeo G. SH2D1A mutation analysis for diagnosis of XLP in typical and atypical patients. Hum Genet. 1999 Nov;105(5):501-5. PMID:10598819
  5. Sumegi J, Huang D, Lanyi A, Davis JD, Seemayer TA, Maeda A, Klein G, Seri M, Wakiguchi H, Purtilo DT, Gross TG. Correlation of mutations of the SH2D1A gene and epstein-barr virus infection with clinical phenotype and outcome in X-linked lymphoproliferative disease. Blood. 2000 Nov 1;96(9):3118-25. PMID:11049992
  6. Benoit L, Wang X, Pabst HF, Dutz J, Tan R. Defective NK cell activation in X-linked lymphoproliferative disease. J Immunol. 2000 Oct 1;165(7):3549-53. PMID:11034354
  7. Sumazaki R, Kanegane H, Osaki M, Fukushima T, Tsuchida M, Matsukura H, Shinozaki K, Kimura H, Matsui A, Miyawaki T. SH2D1A mutations in Japanese males with severe Epstein-Barr virus--associated illnesses. Blood. 2001 Aug 15;98(4):1268-70. PMID:11493483
  8. Li C, Iosef C, Jia CY, Gkourasas T, Han VK, Shun-Cheng Li S. Disease-causing SAP mutants are defective in ligand binding and protein folding. Biochemistry. 2003 Dec 23;42(50):14885-92. PMID:14674764 doi:10.1021/bi034798l
  9. Erdos M, Uzvolgyi E, Nemes Z, Torok O, Rakoczi E, Went-Sumegi N, Sumegi J, Marodi L. Characterization of a new disease-causing mutation of SH2D1A in a family with X-linked lymphoproliferative disease. Hum Mutat. 2005 May;25(5):506. PMID:15841490 doi:10.1002/humu.9339
  10. Hare NJ, Ma CS, Alvaro F, Nichols KE, Tangye SG. Missense mutations in SH2D1A identified in patients with X-linked lymphoproliferative disease differentially affect the expression and function of SAP. Int Immunol. 2006 Jul;18(7):1055-65. Epub 2006 May 23. PMID:16720617 doi:dxl039
  11. Rigley K, Slocombe P, Proudfoot K, Wahid S, Mandair K, Bebbington C. Human p59fyn(T) regulates OKT3-induced calcium influx by a mechanism distinct from PIP2 hydrolysis in Jurkat T cells. J Immunol. 1995 Feb 1;154(3):1136-45. PMID:7822789
  12. Raab M, Cai YC, Bunnell SC, Heyeck SD, Berg LJ, Rudd CE. p56Lck and p59Fyn regulate CD28 binding to phosphatidylinositol 3-kinase, growth factor receptor-bound protein GRB-2, and T cell-specific protein-tyrosine kinase ITK: implications for T-cell costimulation. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8891-5. PMID:7568038
  13. Huang J, Tilly D, Altman A, Sugie K, Grey HM. T-cell receptor antagonists induce Vav phosphorylation by selective activation of Fyn kinase. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10923-9. PMID:11005864
  14. Nakamura T, Yamashita H, Takahashi T, Nakamura S. Activated Fyn phosphorylates alpha-synuclein at tyrosine residue 125. Biochem Biophys Res Commun. 2001 Feb 2;280(4):1085-92. PMID:11162638 doi:10.1006/bbrc.2000.4253
  15. Wolf RM, Wilkes JJ, Chao MV, Resh MD. Tyrosine phosphorylation of p190 RhoGAP by Fyn regulates oligodendrocyte differentiation. J Neurobiol. 2001 Oct;49(1):62-78. PMID:11536198
  16. Taniguchi S, Liu H, Nakazawa T, Yokoyama K, Tezuka T, Yamamoto T. p250GAP, a neural RhoGAP protein, is associated with and phosphorylated by Fyn. Biochem Biophys Res Commun. 2003 Jun 20;306(1):151-5. PMID:12788081
  17. Piedra J, Miravet S, Castano J, Palmer HG, Heisterkamp N, Garcia de Herreros A, Dunach M. p120 Catenin-associated Fer and Fyn tyrosine kinases regulate beta-catenin Tyr-142 phosphorylation and beta-catenin-alpha-catenin Interaction. Mol Cell Biol. 2003 Apr;23(7):2287-97. PMID:12640114
  18. Hisatsune C, Kuroda Y, Nakamura K, Inoue T, Nakamura T, Michikawa T, Mizutani A, Mikoshiba K. Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem. 2004 Apr 30;279(18):18887-94. Epub 2004 Feb 3. PMID:14761972 doi:10.1074/jbc.M311274200
  19. Meriane M, Tcherkezian J, Webber CA, Danek EI, Triki I, McFarlane S, Bloch-Gallego E, Lamarche-Vane N. Phosphorylation of DCC by Fyn mediates Netrin-1 signaling in growth cone guidance. J Cell Biol. 2004 Nov 22;167(4):687-98. PMID:15557120 doi:jcb.200405053
  20. Badour K, Zhang J, Shi F, Leng Y, Collins M, Siminovitch KA. Fyn and PTP-PEST-mediated regulation of Wiskott-Aldrich syndrome protein (WASp) tyrosine phosphorylation is required for coupling T cell antigen receptor engagement to WASp effector function and T cell activation. J Exp Med. 2004 Jan 5;199(1):99-112. PMID:14707117 doi:10.1084/jem.20030976
  21. Zamora-Leon SP, Bresnick A, Backer JM, Shafit-Zagardo B. Fyn phosphorylates human MAP-2c on tyrosine 67. J Biol Chem. 2005 Jan 21;280(3):1962-70. Epub 2004 Nov 9. PMID:15536091 doi:10.1074/jbc.M411380200
  22. Yang C, Zhou W, Jeon MS, Demydenko D, Harada Y, Zhou H, Liu YC. Negative regulation of the E3 ubiquitin ligase itch via Fyn-mediated tyrosine phosphorylation. Mol Cell. 2006 Jan 6;21(1):135-41. PMID:16387660 doi:10.1016/j.molcel.2005.11.014
  23. Tang X, Feng Y, Ye K. Src-family tyrosine kinase fyn phosphorylates phosphatidylinositol 3-kinase enhancer-activating Akt, preventing its apoptotic cleavage and promoting cell survival. Cell Death Differ. 2007 Feb;14(2):368-77. Epub 2006 Jul 14. PMID:16841086 doi:10.1038/sj.cdd.4402011
  24. Castano J, Solanas G, Casagolda D, Raurell I, Villagrasa P, Bustelo XR, Garcia de Herreros A, Dunach M. Specific phosphorylation of p120-catenin regulatory domain differently modulates its binding to RhoA. Mol Cell Biol. 2007 Mar;27(5):1745-57. Epub 2006 Dec 28. PMID:17194753 doi:10.1128/MCB.01974-06
  25. Solheim SA, Torgersen KM, Tasken K, Berge T. Regulation of FynT function by dual domain docking on PAG/Cbp. J Biol Chem. 2008 Feb 1;283(5):2773-83. Epub 2007 Dec 4. PMID:18056706 doi:10.1074/jbc.M705215200
  26. Harita Y, Kurihara H, Kosako H, Tezuka T, Sekine T, Igarashi T, Hattori S. Neph1, a component of the kidney slit diaphragm, is tyrosine-phosphorylated by the Src family tyrosine kinase and modulates intracellular signaling by binding to Grb2. J Biol Chem. 2008 Apr 4;283(14):9177-86. doi: 10.1074/jbc.M707247200. Epub 2008, Feb 7. PMID:18258597 doi:10.1074/jbc.M707247200
  27. Harita Y, Kurihara H, Kosako H, Tezuka T, Sekine T, Igarashi T, Ohsawa I, Ohta S, Hattori S. Phosphorylation of Nephrin Triggers Ca2+ Signaling by Recruitment and Activation of Phospholipase C-{gamma}1. J Biol Chem. 2009 Mar 27;284(13):8951-62. doi: 10.1074/jbc.M806851200. Epub 2009 , Jan 29. PMID:19179337 doi:10.1074/jbc.M806851200
  28. Uchida Y, Ohshima T, Yamashita N, Ogawara M, Sasaki Y, Nakamura F, Goshima Y. Semaphorin3A signaling mediated by Fyn-dependent tyrosine phosphorylation of collapsin response mediator protein 2 at tyrosine 32. J Biol Chem. 2009 Oct 2;284(40):27393-401. Epub 2009 Aug 3. PMID:19652227 doi:M109.000240
  29. Goh YM, Cinghu S, Hong ET, Lee YS, Kim JH, Jang JW, Li YH, Chi XZ, Lee KS, Wee H, Ito Y, Oh BC, Bae SC. Src kinase phosphorylates RUNX3 at tyrosine residues and localizes the protein in the cytoplasm. J Biol Chem. 2010 Mar 26;285(13):10122-9. doi: 10.1074/jbc.M109.071381. Epub 2010, Jan 25. PMID:20100835 doi:10.1074/jbc.M109.071381

Proteopedia Page Contributors and Editors (what is this?)


Personal tools