1v45

From Proteopedia

Jump to: navigation, search
1v45, resolution 2.86Å ()
Ligands: ,
Activity: Purine-nucleoside phosphorylase, with EC number 2.4.2.1
Related: 1v3q, 1v41
Resources: FirstGlance, OCA, RCSB, PDBsum
Coordinates: save as pdb, mmCIF, xml


Contents

Crystal Structure of human PNP complexed with 3-deoxyguanosine

Publication Abstract from PubMed

Purine nucleoside phosphorylase (PNP) is a key enzyme in the purine-salvage pathway, which allows cells to utilize preformed bases and nucleosides in order to synthesize nucleotides. PNP is specific for purine nucleosides in the beta-configuration and exhibits a strong preference for purines containing a 6-keto group and ribosyl-containing nucleosides relative to the corresponding analogues. PNP was crystallized in complex with ligands and data collection was performed using synchrotron radiation. This work reports the structure of human PNP in complex with guanosine (at 2.80 A resolution), 3'-deoxyguanosine (at 2.86 A resolution) and 8-azaguanine (at 2.85 A resolution). These structures were compared with the PNP-guanine, PNP-inosine and PNP-immucillin-H complexes solved previously.

Structure of human PNP complexed with ligands., Canduri F, Silva RG, dos Santos DM, Palma MS, Basso LA, Santos DS, de Azevedo WF Jr, Acta Crystallogr D Biol Crystallogr. 2005 Jul;61(Pt 7):856-62. Epub 2005, Jun 24. PMID:15983407

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Disease

[PNPH_HUMAN] Defects in PNP are the cause of purine nucleoside phosphorylase deficiency (PNPD) [MIM:613179]. It leads to a severe T-cell immunodeficiency with neurologic disorder in children.[1] [2] [3]

Function

[PNPH_HUMAN] The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta-(deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate.[4]

About this Structure

1v45 is a 1 chain structure with sequence from Human. Full crystallographic information is available from OCA.

See Also

Reference

  • Canduri F, Silva RG, dos Santos DM, Palma MS, Basso LA, Santos DS, de Azevedo WF Jr. Structure of human PNP complexed with ligands. Acta Crystallogr D Biol Crystallogr. 2005 Jul;61(Pt 7):856-62. Epub 2005, Jun 24. PMID:15983407 doi:http://dx.doi.org/10.1107/S0907444905005421
  1. Williams SR, Gekeler V, McIvor RS, Martin DW Jr. A human purine nucleoside phosphorylase deficiency caused by a single base change. J Biol Chem. 1987 Feb 15;262(5):2332-8. PMID:3029074
  2. Aust MR, Andrews LG, Barrett MJ, Norby-Slycord CJ, Markert ML. Molecular analysis of mutations in a patient with purine nucleoside phosphorylase deficiency. Am J Hum Genet. 1992 Oct;51(4):763-72. PMID:1384322
  3. Pannicke U, Tuchschmid P, Friedrich W, Bartram CR, Schwarz K. Two novel missense and frameshift mutations in exons 5 and 6 of the purine nucleoside phosphorylase (PNP) gene in a severe combined immunodeficiency (SCID) patient. Hum Genet. 1996 Dec;98(6):706-9. PMID:8931706
  4. Ealick SE, Rule SA, Carter DC, Greenhough TJ, Babu YS, Cook WJ, Habash J, Helliwell JR, Stoeckler JD, Parks RE Jr, et al.. Three-dimensional structure of human erythrocytic purine nucleoside phosphorylase at 3.2 A resolution. J Biol Chem. 1990 Jan 25;265(3):1812-20. PMID:2104852

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools