Structural highlights
1w9d is a 1 chain structure with sequence from Sinapis alba. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
|
Method: | X-ray diffraction, Resolution 1.6Å |
Ligands: | , , , , , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
MYRA_SINAL Degradation of glucosinolates (glucose residue linked by a thioglucoside bound to an amino acid derivative) to glucose, sulfate and any of the products: thiocyanates, isothiocyanates, nitriles, epithionitriles or oxazolidine-2-thiones.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Myrosinase, a thioglucoside glucohydrolase, is the only enzyme able to hydrolyse glucosinolates, a unique family of molecules bearing an anomeric O-sulfated thiohydroximate function. Non-hydrolysable myrosinase inhibitors have been devised and studied for their biological interaction. Diverse modifications of the O-sulfate moiety did not result in a significant inhibitory effect, whereas replacing the D-glucopyrano residue by its carba-analogue allowed inhibition to take place. X-Ray experiments carried out after soaking allowed for the first time inclusion of a non-hydrolysable inhibitor inside the enzymatic pocket. Structural tuning of the aglycon part in its pocket is being used as a guide for the development of simplified and more potent inhibitors.
The glucosinolate-myrosinase system. New insights into enzyme-substrate interactions by use of simplified inhibitors.,Bourderioux A, Lefoix M, Gueyrard D, Tatibouet A, Cottaz S, Arzt S, Burmeister WP, Rollin P Org Biomol Chem. 2005 May 21;3(10):1872-9. Epub 2005 Apr 14. PMID:15889170[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Bourderioux A, Lefoix M, Gueyrard D, Tatibouet A, Cottaz S, Arzt S, Burmeister WP, Rollin P. The glucosinolate-myrosinase system. New insights into enzyme-substrate interactions by use of simplified inhibitors. Org Biomol Chem. 2005 May 21;3(10):1872-9. Epub 2005 Apr 14. PMID:15889170 doi:10.1039/b502990b