1y1i

From Proteopedia

Jump to: navigation, search
1y1i, resolution 2.61Å ()
Ligands: ,
Related: 1y1e, 1y1f, 1y1g, 1y1h, 1y1j
Resources: FirstGlance, OCA, RCSB, PDBsum
Coordinates: save as pdb, mmCIF, xml


hyuman formylglycine generating enzyme, reduced form

Publication Abstract from PubMed

Sulfatases are enzymes essential for degradation and remodeling of sulfate esters. Formylglycine (FGly), the key catalytic residue in the active site, is unique to sulfatases. In higher eukaryotes, FGly is generated from a cysteine precursor by the FGly-generating enzyme (FGE). Inactivity of FGE results in multiple sulfatase deficiency (MSD), a fatal autosomal recessive syndrome. Based on the crystal structure, we report that FGE is a single-domain monomer with a surprising paucity of secondary structure and adopts a unique fold. The effect of all 18 missense mutations found in MSD patients is explained by the FGE structure, providing a molecular basis of MSD. The catalytic mechanism of FGly generation was elucidated by six high-resolution structures of FGE in different redox environments. The structures allow formulation of a novel oxygenase mechanism whereby FGE utilizes molecular oxygen to generate FGly via a cysteine sulfenic acid intermediate.

Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme., Dierks T, Dickmanns A, Preusser-Kunze A, Schmidt B, Mariappan M, von Figura K, Ficner R, Rudolph MG, Cell. 2005 May 20;121(4):541-52. PMID:15907468

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

About this Structure

1y1i is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.

Reference

  • Dierks T, Dickmanns A, Preusser-Kunze A, Schmidt B, Mariappan M, von Figura K, Ficner R, Rudolph MG. Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme. Cell. 2005 May 20;121(4):541-52. PMID:15907468 doi:http://dx.doi.org/10.1016/j.cell.2005.03.001

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools