First time at Proteopedia? Click on the green links: they change the 3D image. Click and drag the molecules. Proteopedia is a 3D, interactive encyclopedia of proteins, RNA, DNA and other molecules. With a free user account, you can edit pages in Proteopedia. Visit the Main Page to learn more.

2bbt

From Proteopedia

Jump to: navigation, search
2bbt, resolution 2.30Å ()
Ligands: ,
Gene: CFTR, ABCC7 (Homo sapiens)
Related: 2bbo, 2bbs
Resources: FirstGlance, OCA, RCSB, PDBsum
Coordinates: save as pdb, mmCIF, xml


Contents

Human deltaF508 NBD1 with two solublizing mutations.

Publication Abstract from PubMed

The DeltaF508 mutation in nucleotide-binding domain 1 (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) is the predominant cause of cystic fibrosis. Previous biophysical studies on human F508 and DeltaF508 domains showed only local structural changes restricted to residues 509-511 and only minor differences in folding rate and stability. These results were remarkable because DeltaF508 was widely assumed to perturb domain folding based on the fact that it prevents trafficking of CFTR out of the endoplasmic reticulum. However, the previously reported crystal structures did not come from matched F508 and DeltaF508 constructs, and the DeltaF508 structure contained additional mutations that were required to obtain sufficient protein solubility. In this article, we present additional biophysical studies of NBD1 designed to address these ambiguities. Mass spectral measurements of backbone amide (1)H/(2)H exchange rates in matched F508 and DeltaF508 constructs reveal that DeltaF508 increases backbone dynamics at residues 509-511 and the adjacent protein segments but not elsewhere in NBD1. These measurements also confirm a high level of flexibility in the protein segments exhibiting variable conformations in the crystal structures. We additionally present crystal structures of a broader set of human NBD1 constructs, including one harboring the native F508 residue and others harboring the DeltaF508 mutation in the presence of fewer and different solubilizing mutations. The only consistent conformational difference is observed at residues 509-511. The side chain of residue V510 in this loop is mostly buried in all non-DeltaF508 structures but completely solvent exposed in all DeltaF508 structures. These results reinforce the importance of the perturbation DeltaF508 causes in the surface topography of NBD1 in a region likely to mediate contact with the transmembrane domains of CFTR. However, they also suggest that increased exposure of the 509-511 loop and increased dynamics in its vicinity could promote aggregation in vitro and aberrant intermolecular interactions that impede trafficking in vivo.

Structure and dynamics of NBD1 from CFTR characterized using crystallography and hydrogen/deuterium exchange mass spectrometry., Lewis HA, Wang C, Zhao X, Hamuro Y, Conners K, Kearins MC, Lu F, Sauder JM, Molnar KS, Coales SJ, Maloney PC, Guggino WB, Wetmore DR, Weber PC, Hunt JF, J Mol Biol. 2010 Feb 19;396(2):406-30. Epub 2009 Nov 26. PMID:19944699

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Disease

[CFTR_HUMAN] Defects in CFTR are the cause of cystic fibrosis (CF) [MIM:219700]; also known as mucoviscidosis. CF is the most common genetic disease in the Caucasian population, with a prevalence of about 1 in 2'000 live births. Inheritance is autosomal recessive. CF is a common generalized disorder of exocrine gland function which impairs clearance of secretions in a variety of organs. It is characterized by the triad of chronic bronchopulmonary disease (with recurrent respiratory infections), pancreatic insufficiency (which leads to malabsorption and growth retardation) and elevated sweat electrolytes.[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][45][46] Defects in CFTR are the cause of congenital bilateral absence of the vas deferens (CBAVD) [MIM:277180]. CBAVD is an important cause of sterility in men and could represent an incomplete form of cystic fibrosis, as the majority of men suffering from cystic fibrosis lack the vas deferens.[47][48][49][50][:]

Function

[CFTR_HUMAN] Involved in the transport of chloride ions. May regulate bicarbonate secretion and salvage in epithelial cells by regulating the SLC4A7 transporter. Can inhibit the chloride channel activity of ANO1.[51]

About this Structure

2bbt is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.

See Also

Reference

  • Lewis HA, Wang C, Zhao X, Hamuro Y, Conners K, Kearins MC, Lu F, Sauder JM, Molnar KS, Coales SJ, Maloney PC, Guggino WB, Wetmore DR, Weber PC, Hunt JF. Structure and dynamics of NBD1 from CFTR characterized using crystallography and hydrogen/deuterium exchange mass spectrometry. J Mol Biol. 2010 Feb 19;396(2):406-30. Epub 2009 Nov 26. PMID:19944699 doi:10.1016/j.jmb.2009.11.051
  1. Cutting GR, Kasch LM, Rosenstein BJ, Zielenski J, Tsui LC, Antonarakis SE, Kazazian HH Jr. A cluster of cystic fibrosis mutations in the first nucleotide-binding fold of the cystic fibrosis conductance regulator protein. Nature. 1990 Jul 26;346(6282):366-9. PMID:1695717 doi:http://dx.doi.org/10.1038/346366a0
  2. Kerem BS, Zielenski J, Markiewicz D, Bozon D, Gazit E, Yahav J, Kennedy D, Riordan JR, Collins FS, Rommens JM, et al.. Identification of mutations in regions corresponding to the two putative nucleotide (ATP)-binding folds of the cystic fibrosis gene. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8447-51. PMID:2236053
  3. White MB, Krueger LJ, Holsclaw DS Jr, Gerrard BC, Stewart C, Quittell L, Dolganov G, Baranov V, Ivaschenko T, Kapronov NI, et al.. Detection of three rare frameshift mutations in the cystic fibrosis gene in an African-American (CF444delA), an Italian (CF2522insC), and a Soviet (CF3821delT). Genomics. 1991 May;10(1):266-9. PMID:1710600
  4. Jones CT, McIntosh I, Keston M, Ferguson A, Brock DJ. Three novel mutations in the cystic fibrosis gene detected by chemical cleavage: analysis of variant splicing and a nonsense mutation. Hum Mol Genet. 1992 Apr;1(1):11-7. PMID:1284466
  5. Cheadle JP, Meredith AL, al-Jader LN. A new missense mutation (R1283M) in exon 20 of the cystic fibrosis transmembrane conductance regulator gene. Hum Mol Genet. 1992 May;1(2):123-5. PMID:1284468
  6. Lissens W, Bonduelle M, Malfroot A, Dab I, Liebaers I. A serine to proline substitution (S1255P) in the second nucleotide binding fold of the cystic fibrosis gene. Hum Mol Genet. 1992 Sep;1(6):441-2. PMID:1284530
  7. Shackleton S, Beards F, Harris A. Detection of novel and rare mutations in exon 4 of the cystic fibrosis gene by SSCP. Hum Mol Genet. 1992 Sep;1(6):439-40. PMID:1284529
  8. Zielenski J, Fujiwara TM, Markiewicz D, Paradis AJ, Anacleto AI, Richards B, Schwartz RH, Klinger KW, Tsui LC, Morgan K. Identification of the M1101K mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and complete detection of cystic fibrosis mutations in the Hutterite population. Am J Hum Genet. 1993 Mar;52(3):609-15. PMID:7680525
  9. Mercier B, Lissens W, Novelli G, Kalaydjieva L, De Arce M, Kapranov N, Klain NC, Lenoir G, Chauveau P, Lenaerts C, et al.. Identification of eight novel mutations in a collaborative analysis of a part of the second transmembrane domain of the CFTR gene. Genomics. 1993 Apr;16(1):296-7. PMID:7683628
  10. Nunes V, Chillon M, Dork T, Tummler B, Casals T, Estivill X. A new missense mutation (E92K) in the first transmembrane domain of the CFTR gene causes a benign cystic fibrosis phenotype. Hum Mol Genet. 1993 Jan;2(1):79-80. PMID:7683954
  11. Chillon M, Casals T, Nunes V, Gimenez J, Perez Ruiz E, Estivill X. Identification of a new missense mutation (P205S) in the first transmembrane domain of the CFTR gene associated with a mild cystic fibrosis phenotype. Hum Mol Genet. 1993 Oct;2(10):1741-2. PMID:7505694
  12. Gasparini P, Marigo C, Bisceglia G, Nicolis E, Zelante L, Bombieri C, Borgo G, Pignatti PF, Cabrini G. Screening of 62 mutations in a cohort of cystic fibrosis patients from north eastern Italy: their incidence and clinical features of defined genotypes. Hum Mutat. 1993;2(5):389-94. PMID:7504969 doi:http://dx.doi.org/10.1002/humu.1380020511
  13. Ghanem N, Costes B, Girodon E, Martin J, Fanen P, Goossens M. Identification of eight mutations and three sequence variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Genomics. 1994 May 15;21(2):434-6. PMID:7522211 doi:http://dx.doi.org/S0888-7543(84)71290-0
  14. Boteva K, Papageorgiou E, Georgiou C, Angastiniotis M, Middleton LT, Constantinou-Deltas CD. Novel cystic fibrosis mutation associated with mild disease in Cypriot patients. Hum Genet. 1994 May;93(5):529-32. PMID:7513296
  15. Dork T, Mekus F, Schmidt K, Bosshammer J, Fislage R, Heuer T, Dziadek V, Neumann T, Kalin N, Wulbrand U, et al.. Detection of more than 50 different CFTR mutations in a large group of German cystic fibrosis patients. Hum Genet. 1994 Nov;94(5):533-42. PMID:7525450
  16. Greil I, Wagner K, Rosenkranz W. A new missense mutation G1249E in exon 20 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Hum Hered. 1994 Jul-Aug;44(4):238-40. PMID:7520022
  17. Petreska L, Koceva S, Gordova-Muratovska A, Nestorov R, Efremov GD. Identification of two new mutations (711 +3A-->G and V1397E) in CF chromosomes of Albanian and Macedonian origin. Hum Mol Genet. 1994 Jun;3(6):999-1000. PMID:7524913
  18. Schaedel C, Kristoffersson AC, Kornfalt R, Holmberg L. A novel cystic fibrosis mutation, Y109C, in the first transmembrane domain of CFTR. Hum Mol Genet. 1994 Jun;3(6):1001-2. PMID:7524909
  19. Chillon M, Casals T, Gimenez J, Nunes V, Estivill X. Analysis of the CFTR gene in the Spanish population: SSCP-screening for 60 known mutations and identification of four new mutations (Q30X, A120T, 1812-1 G-->A, and 3667del4). Hum Mutat. 1994;3(3):223-30. PMID:7517264 doi:http://dx.doi.org/10.1002/humu.1380030308
  20. Bienvenu T, Petitpretz P, Beldjord C, Kaplan JC. A missense mutation (F87L) in exon 3 of the cystic fibrosis transmembrane conductance regulator gene. Hum Mutat. 1994;3(4):395-6. PMID:8081395 doi:http://dx.doi.org/10.1002/humu.1380030412
  21. Brancolini V, Cremonesi L, Belloni E, Pappalardo E, Bordoni R, Seia M, Russo S, Padoan R, Giunta A, Ferrari M. Search for mutations in pancreatic sufficient cystic fibrosis Italian patients: detection of 90% of molecular defects and identification of three novel mutations. Hum Genet. 1995 Sep;96(3):312-8. PMID:7544319
  22. Desgeorges M, Rodier M, Piot M, Demaille J, Claustres M. Four adult patients with the missense mutation L206W and a mild cystic fibrosis phenotype. Hum Genet. 1995 Dec;96(6):717-20. PMID:8522333
  23. Zielenski J, Markiewicz D, Chen HS, Schappert K, Seller A, Durie P, Corey M, Tsui LC. Identification of six mutations (R31L, 441delA, 681delC, 1461ins4, W1089R, E1104X) in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Hum Mutat. 1995;5(1):43-7. PMID:7537150 doi:http://dx.doi.org/10.1002/humu.1380050106
  24. Verlingue C, Kapranov NI, Mercier B, Ginter EK, Petrova NV, Audrezet MP, Ferec C. Complete screening of mutations in the coding sequence of the CFTR gene in a sample of CF patients from Russia: identification of three novel alleles. Hum Mutat. 1995;5(3):205-9. PMID:7541273 doi:http://dx.doi.org/10.1002/humu.1380050304
  25. Romey MC, Desgeorges M, Ray P, Godard P, Demaille J, Claustres M. Novel missense mutation in the first transmembrane segment of the CFTR gene (Q98R) identified in a male adult. Hum Mutat. 1995;6(2):190-1. PMID:7581407 doi:http://dx.doi.org/10.1002/humu.1380060216
  26. Leoni GB, Pitzalis S, Podda R, Zanda M, Silvetti M, Caocci L, Cao A, Rosatelli MC. A specific cystic fibrosis mutation (T3381) associated with the phenotype of isolated hypotonic dehydration. J Pediatr. 1995 Aug;127(2):281-3. PMID:7543567
  27. Ferec C, Novelli G, Verlingue C, Quere I, Dallapiccola B, Audrezet MP, Mercier B. Identification of six novel CFTR mutations in a sample of Italian cystic fibrosis patients. Mol Cell Probes. 1995 Apr;9(2):135-7. PMID:7541510
  28. Messaoud T, Verlingue C, Denamur E, Pascaud O, Quere I, Fattoum S, Elion J, Ferec C. Distribution of CFTR mutations in cystic fibrosis patients of Tunisian origin: identification of two novel mutations. Eur J Hum Genet. 1996;4(1):20-4. PMID:8800923
  29. Nasr SZ, Strong TV, Mansoura MK, Dawson DC, Collins FS. Novel missense mutation (G314R) in a cystic fibrosis patient with hepatic failure. Hum Mutat. 1996;7(2):151-4. PMID:8829633 doi:<151::AID-HUMU10>3.0.CO;2-1 10.1002/(SICI)1098-1004(1996)7:2<151::AID-HUMU10>3.0.CO;2-1
  30. Petreska L, Plaseska D, Koceva S, Stavljenic-Rukavina A, Efremov GD. A novel mutation in exon 12 (Y569C) of the CFTR gene identified in a patient of Croatian origin. Hum Mutat. 1996;7(4):374-5. PMID:8723693 doi:10.1002/humu.1380070402
  31. Bienvenu T, Chertkoff L, Beldjord C, Segal E, Carniglia L, Barreiro C, Kaplan JC. Identification of three novel mutations in the cystic fibrosis transmembrane conductance regulator gene in Argentinian CF patients. Hum Mutat. 1996;7(4):376-7. PMID:8723695 doi:<376::AID-HUMU18>3.0.CO;2-# 10.1002/(SICI)1098-1004(1996)7:4<376::AID-HUMU18>3.0.CO;2-#
  32. Hughes DJ, Hill AJ, Macek M Jr, Redmond AO, Nevin NC, Graham CA. Mutation characterization of CFTR gene in 206 Northern Irish CF families: thirty mutations, including two novel, account for approximately 94% of CF chromosomes. Hum Mutat. 1996;8(4):340-7. PMID:8956039 doi:<340::AID-HUMU7>3.0.CO;2-B 10.1002/(SICI)1098-1004(1996)8:4<340::AID-HUMU7>3.0.CO;2-B
  33. Clavel C, Pennaforte F, Pigeon F, Verlingue C, Birembaut P, Ferec C. Identification of four novel mutations in the cystic fibrosis transmembrane conductance regulator gene: E664X, 2113delA, 306delTAGA, and delta M1140. Hum Mutat. 1997;9(4):368-9. PMID:9101301 doi:<368::AID-HUMU13>3.0.CO;2-0 10.1002/(SICI)1098-1004(1997)9:4<368::AID-HUMU13>3.0.CO;2-0
  34. Gouya L, Pascaud O, Munck A, Elion J, Denamur E. Novel mutation (A141D) in exon 4 of the CFTR gene identified in an Algerian patient. Hum Mutat. 1997;10(1):86-7. PMID:9222768 doi:<86::AID-HUMU15>3.0.CO;2-W 10.1002/(SICI)1098-1004(1997)10:1<86::AID-HUMU15>3.0.CO;2-W
  35. Casals T, Pacheco P, Barreto C, Gimenez J, Ramos MD, Pereira S, Pinheiro JA, Cobos N, Curvelo A, Vazquez C, Rocha H, Seculi JL, Perez E, Dapena J, Carrilho E, Duarte A, Palacio AM, Nunes V, Lavinha J, Estivill X. Missense mutation R1066C in the second transmembrane domain of CFTR causes a severe cystic fibrosis phenotype: study of 19 heterozygous and 2 homozygous patients. Hum Mutat. 1997;10(5):387-92. PMID:9375855 doi:<387::AID-HUMU9>3.0.CO;2-C 10.1002/(SICI)1098-1004(1997)10:5<387::AID-HUMU9>3.0.CO;2-C
  36. Shrimpton AE, Borowitz D, Swender P. Cystic fibrosis mutation frequencies in upstate New York. Hum Mutat. 1997;10(6):436-42. PMID:9401006 doi:<436::AID-HUMU4>3.0.CO;2-B 10.1002/(SICI)1098-1004(1997)10:6<436::AID-HUMU4>3.0.CO;2-B
  37. Friedman KJ, Leigh MW, Czarnecki P, Feldman GL. Cystic fibrosis transmembrane-conductance regulator mutations among African Americans. Am J Hum Genet. 1998 Jan;62(1):195-6. PMID:9443874 doi:10.1086/301681
  38. Onay T, Topaloglu O, Zielenski J, Gokgoz N, Kayserili H, Camcioglu Y, Cokugras H, Akcakaya N, Apak M, Tsui LC, Kirdar B. Analysis of the CFTR gene in Turkish cystic fibrosis patients: identification of three novel mutations (3172delAC, P1013L and M1028I). Hum Genet. 1998 Feb;102(2):224-30. PMID:9521595
  39. Bombieri C, Benetazzo M, Saccomani A, Belpinati F, Gile LS, Luisetti M, Pignatti PF. Complete mutational screening of the CFTR gene in 120 patients with pulmonary disease. Hum Genet. 1998 Dec;103(6):718-22. PMID:9921909
  40. Vankeerberghen A, Wei L, Jaspers M, Cassiman JJ, Nilius B, Cuppens H. Characterization of 19 disease-associated missense mutations in the regulatory domain of the cystic fibrosis transmembrane conductance regulator. Hum Mol Genet. 1998 Oct;7(11):1761-9. PMID:9736778
  41. Malone G, Haworth A, Schwarz MJ, Cuppens H, Super M. Detection of five novel mutations of the cystic fibrosis transmembrane regulator (CFTR) gene in Pakistani patients with cystic fibrosis: Y569D, Q98X, 296+12(T>C), 1161delC and 621+2(T>C). Hum Mutat. 1998;11(2):152-7. PMID:9482579 doi:<152::AID-HUMU8>3.0.CO;2-L 10.1002/(SICI)1098-1004(1998)11:2<152::AID-HUMU8>3.0.CO;2-L
  42. Leoni GB, Pitzalis S, Tonelli R, Cao A. Identification of a novel mutation (S13F) in the CFTR gene in a CF patient of Sardinian origin. Hum Mutat. 1998;11(4):337. PMID:9554753
  43. Feldmann D, Sardet A, Cougoureux E, Plouvier E, Fontaine JL, Tournier G, Aymard P. Identification of three novel mutations in the CFTR gene, R117P, deltaD192, and 3121-1G-->A in four French patients. Hum Mutat. 1998;Suppl 1:S78-80. PMID:9452048
  44. Casals T, Ramos MD, Gimenez J, Nadal M, Nunes V, Estivill X. Paternal origin of a de novo novel CFTR mutation (L1065R) causing cystic fibrosis. Hum Mutat. 1998;Suppl 1:S99-102. PMID:9452054
  45. Shackleton S, Harris A. A 2-amino acid insertion mutation (1243insACAAAA) in exon 7 of the CFTR gene. Hum Mutat. 1998;Suppl 1:S156-7. PMID:9452073
  46. Picci L, Cameran M, Olante P, Zacchello F, Scarpa M. Identification of a D579G homozygote cystic fibrosis patient with pancreatic sufficiency and minor lung involvement. Mutations in brief no. 221. Online. Hum Mutat. 1999;13(2):173. PMID:10094564 doi:<173::AID-HUMU19>3.0.CO;2-E 10.1002/(SICI)1098-1004(1999)13:2<173::AID-HUMU19>3.0.CO;2-E
  47. Mercier B, Verlingue C, Lissens W, Silber SJ, Novelli G, Bonduelle M, Audrezet MP, Ferec C. Is congenital bilateral absence of vas deferens a primary form of cystic fibrosis? Analyses of the CFTR gene in 67 patients. Am J Hum Genet. 1995 Jan;56(1):272-7. PMID:7529962
  48. Jezequel P, Dorval I, Fergelot P, Chauvel B, Le Treut A, Le Gall JY, Le Lannou D, Blayau M. Structural analysis of CFTR gene in congenital bilateral absence of vas deferens. Clin Chem. 1995 Jun;41(6 Pt 1):833-5. PMID:7539342
  49. Zielenski J, Patrizio P, Markiewicz D, Asch RH, Tsui LC. Identification of two mutations (S50Y and 4173delC) in the CFTR gene from patients with congenital bilateral absence of vas deferens (CBAVD). Hum Mutat. 1997;9(2):183-4. PMID:9067761 doi:<183::AID-HUMU13>3.0.CO;2-Z 10.1002/(SICI)1098-1004(1997)9:2<183::AID-HUMU13>3.0.CO;2-Z
  50. Bienvenu T, Bousquet S, Vidaud D, Hubert D, Francoual C, Beldjord C, Kaplan JC. A novel missense mutation D513G in exon 10 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene identified in a French CBAVD patient. Mutations in brief no. 175. Online. Hum Mutat. 1998;12(3):213-4. PMID:10651488
  51. Ousingsawat J, Kongsuphol P, Schreiber R, Kunzelmann K. CFTR and TMEM16A are separate but functionally related Cl- channels. Cell Physiol Biochem. 2011;28(4):715-24. doi: 10.1159/000335765. Epub 2011 Dec, 14. PMID:22178883 doi:10.1159/000335765

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools