2bvc
From Proteopedia
Crystal structure of Mycobacterium tuberculosis glutamine synthetase in complex with a transition state mimic
Structural highlights
FunctionGLN1B_MYCTU Involved in nitrogen metabolism via ammonium assimilation. Catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia (PubMed:7937767, PubMed:12819079). Also able to use GTP (PubMed:7937767). D-glutamate is a poor substrate, and DL-glutamate shows about 50% of the standard specific activity (PubMed:7937767). Also plays a key role in controlling the ammonia levels within infected host cells and so contributes to the pathogens capacity to inhibit phagosome acidification and phagosome-lysosome fusion (PubMed:7937767, PubMed:12819079). Involved in cell wall biosynthesis via the production of the major component poly-L-glutamine (PLG) (PubMed:7937767, PubMed:10618433). PLG synthesis in the cell wall occurs only in nitrogen limiting conditions and on the contrary high nitrogen conditions inhibit PLG synthesis (Probable).[1] [2] [3] [4] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedGlutamine synthetase catalyzes the ligation of glutamate and ammonia to form glutamine, with the resulting hydrolysis of ATP. The enzyme is a central component of bacterial nitrogen metabolism and is a potential drug target. Here, we report a high-yield recombinant expression system for glutamine synthetase of Mycobacterium tuberculosis together with a simple purification. The procedure allowed the structure of a complex with a phosphorylated form of the inhibitor methionine sulfoximine, magnesium, and ADP to be solved by molecular replacement and refined at 2.1-A resolution. To our knowledge, this study provides the first reported structure for a taut form of the M. tuberculosis enzyme, similar to that observed for the Salmonella enzyme earlier. The phospho compound, generated in situ by an active enzyme, mimics the phosphorylated tetrahedral adduct at the transition state. Some differences in ligand interactions of the protein with both phosphorylated compound and nucleotide are observed compared with earlier structures; a third metal ion also is found. The importance of these differences in the catalytic mechanism is discussed; the results will help guide the search for specific inhibitors of potential therapeutic interest. Structure of Mycobacterium tuberculosis glutamine synthetase in complex with a transition-state mimic provides functional insights.,Krajewski WW, Jones TA, Mowbray SL Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10499-504. Epub 2005 Jul 18. PMID:16027359[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|