First time at Proteopedia? Click on the green links: they change the 3D image. Click and drag the molecules. Proteopedia is a 3D, interactive encyclopedia of proteins, RNA, DNA and other molecules. With a free user account, you can edit pages in Proteopedia. Visit the Main Page to learn more.

2hwl

From Proteopedia

Jump to: navigation, search
2hwl, resolution 2.40Å ()
Ligands: ,
Non-Standard Residues:
Gene: F2 (Homo sapiens)
Activity: Thrombin, with EC number 3.4.21.5
Resources: FirstGlance, OCA, RCSB, PDBsum
Coordinates: save as pdb, mmCIF, xml


Contents

Crystal structure of thrombin in complex with fibrinogen gamma' peptide

Publication Abstract from PubMed

Elevated levels of heterodimeric gamma(A)/gamma' fibrinogen 2 have been associated with an increased incidence of coronary artery disease, whereas a lowered content of gamma' chains is associated with an increased risk of venous thrombosis. Both situations may be related to the unique features of thrombin binding to variant gamma' chains. The gamma' peptide is an anionic fragment that binds thrombin with high affinity without interfering directly with substrate binding. Here we report the crystal structure of thrombin bound to the gamma' peptide, solved at 2.4 A resolution. The complex reveals extensive interactions between thrombin and the gamma' peptide mediated by electrostatic contacts with residues of exosite II and hydrophobic interactions with a pocket in close proximity to the Na(+) binding site. In its binding mode, the gamma' peptide completely overlaps with heparin bound to exosite II. These findings are consistent with functional data and broaden our understanding of how thrombin interacts with fibrinogen at the molecular level.

Crystal structure of thrombin in complex with fibrinogen gamma' peptide., Pineda AO, Chen ZW, Marino F, Mathews FS, Mosesson MW, Di Cera E, Biophys Chem. 2007 Feb;125(2-3):556-9. Epub 2006 Aug 23. PMID:16962697

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Disease

[THRB_HUMAN] Defects in F2 are the cause of factor II deficiency (FA2D) [MIM:613679]. It is a very rare blood coagulation disorder characterized by mucocutaneous bleeding symptoms. The severity of the bleeding manifestations correlates with blood factor II levels.[1][2][3][4][5][6][7][8][9][10][11][12] Genetic variations in F2 may be a cause of susceptibility to ischemic stroke (ISCHSTR) [MIM:601367]; also known as cerebrovascular accident or cerebral infarction. A stroke is an acute neurologic event leading to death of neural tissue of the brain and resulting in loss of motor, sensory and/or cognitive function. Ischemic strokes, resulting from vascular occlusion, is considered to be a highly complex disease consisting of a group of heterogeneous disorders with multiple genetic and environmental risk factors.[13] Defects in F2 are the cause of thrombophilia due to thrombin defect (THPH1) [MIM:188050]. It is a multifactorial disorder of hemostasis characterized by abnormal platelet aggregation in response to various agents and recurrent thrombi formation. Note=A common genetic variation in the 3-prime untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increased risk of venous thrombosis. Defects in F2 are associated with susceptibility to pregnancy loss, recurrent, type 2 (RPRGL2) [MIM:614390]. A common complication of pregnancy, resulting in spontaneous abortion before the fetus has reached viability. The term includes all miscarriages from the time of conception until 24 weeks of gestation. Recurrent pregnancy loss is defined as 3 or more consecutive spontaneous abortions.[14] [FIBG_HUMAN] Defects in FGG are a cause of congenital afibrinogenemia (CAFBN) [MIM:202400]. This rare autosomal recessive disorder is characterized by bleeding that varies from mild to severe and by complete absence or extremely low levels of plasma and platelet fibrinogen. Note=Patients with congenital fibrinogen abnormalities can manifest different clinical pictures. Some cases are clinically silent, some show a tendency toward bleeding and some show a predisposition for thrombosis with or without bleeding.

Function

[THRB_HUMAN] Thrombin, which cleaves bonds after Arg and Lys, converts fibrinogen to fibrin and activates factors V, VII, VIII, XIII, and, in complex with thrombomodulin, protein C. Functions in blood homeostasis, inflammation and wound healing.[15] [FIBG_HUMAN] Fibrinogen has a double function: yielding monomers that polymerize into fibrin and acting as a cofactor in platelet aggregation.

About this Structure

2hwl is a 5 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.

See Also

Reference

  • Pineda AO, Chen ZW, Marino F, Mathews FS, Mosesson MW, Di Cera E. Crystal structure of thrombin in complex with fibrinogen gamma' peptide. Biophys Chem. 2007 Feb;125(2-3):556-9. Epub 2006 Aug 23. PMID:16962697 doi:10.1016/j.bpc.2006.08.005
  1. Wang W, Fu Q, Zhou R, Wu W, Ding Q, Hu Y, Wang X, Wang H, Wang Z. Prothrombin Shanghai: hypoprothrombinaemia caused by substitution of Gla29 by Gly. Haemophilia. 2004 Jan;10(1):94-7. PMID:14962227
  2. Board PG, Shaw DC. Determination of the amino acid substitution in human prothrombin type 3 (157 Glu leads to Lys) and the localization of a third thrombin cleavage site. Br J Haematol. 1983 Jun;54(2):245-54. PMID:6405779
  3. Rabiet MJ, Furie BC, Furie B. Molecular defect of prothrombin Barcelona. Substitution of cysteine for arginine at residue 273. J Biol Chem. 1986 Nov 15;261(32):15045-8. PMID:3771562
  4. Miyata T, Morita T, Inomoto T, Kawauchi S, Shirakami A, Iwanaga S. Prothrombin Tokushima, a replacement of arginine-418 by tryptophan that impairs the fibrinogen clotting activity of derived thrombin Tokushima. Biochemistry. 1987 Feb 24;26(4):1117-22. PMID:3567158
  5. Inomoto T, Shirakami A, Kawauchi S, Shigekiyo T, Saito S, Miyoshi K, Morita T, Iwanaga S. Prothrombin Tokushima: characterization of dysfunctional thrombin derived from a variant of human prothrombin. Blood. 1987 Feb;69(2):565-9. PMID:3801671
  6. Henriksen RA, Mann KG. Identification of the primary structural defect in the dysthrombin thrombin Quick I: substitution of cysteine for arginine-382. Biochemistry. 1988 Dec 27;27(26):9160-5. PMID:3242619
  7. Henriksen RA, Mann KG. Substitution of valine for glycine-558 in the congenital dysthrombin thrombin Quick II alters primary substrate specificity. Biochemistry. 1989 Mar 7;28(5):2078-82. PMID:2719946
  8. Miyata T, Aruga R, Umeyama H, Bezeaud A, Guillin MC, Iwanaga S. Prothrombin Salakta: substitution of glutamic acid-466 by alanine reduces the fibrinogen clotting activity and the esterase activity. Biochemistry. 1992 Aug 25;31(33):7457-62. PMID:1354985
  9. Morishita E, Saito M, Kumabashiri I, Asakura H, Matsuda T, Yamaguchi K. Prothrombin Himi: a compound heterozygote for two dysfunctional prothrombin molecules (Met-337-->Thr and Arg-388-->His). Blood. 1992 Nov 1;80(9):2275-80. PMID:1421398
  10. Iwahana H, Yoshimoto K, Shigekiyo T, Shirakami A, Saito S, Itakura M. Detection of a single base substitution of the gene for prothrombin Tokushima. The application of PCR-SSCP for the genetic and molecular analysis of dysprothrombinemia. Int J Hematol. 1992 Feb;55(1):93-100. PMID:1349838
  11. James HL, Kim DJ, Zheng DQ, Girolami A. Prothrombin Padua I: incomplete activation due to an amino acid substitution at a factor Xa cleavage site. Blood Coagul Fibrinolysis. 1994 Oct;5(5):841-4. PMID:7865694
  12. Degen SJ, McDowell SA, Sparks LM, Scharrer I. Prothrombin Frankfurt: a dysfunctional prothrombin characterized by substitution of Glu-466 by Ala. Thromb Haemost. 1995 Feb;73(2):203-9. PMID:7792730
  13. Casas JP, Hingorani AD, Bautista LE, Sharma P. Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18,000 cases and 58,000 controls. Arch Neurol. 2004 Nov;61(11):1652-61. PMID:15534175 doi:61/11/1652
  14. Pihusch R, Buchholz T, Lohse P, Rubsamen H, Rogenhofer N, Hasbargen U, Hiller E, Thaler CJ. Thrombophilic gene mutations and recurrent spontaneous abortion: prothrombin mutation increases the risk in the first trimester. Am J Reprod Immunol. 2001 Aug;46(2):124-31. PMID:11506076
  15. Glenn KC, Frost GH, Bergmann JS, Carney DH. Synthetic peptides bind to high-affinity thrombin receptors and modulate thrombin mitogenesis. Pept Res. 1988 Nov-Dec;1(2):65-73. PMID:2856554

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools