First time at Proteopedia? Click on the green links: they change the 3D image. Click and drag the molecules. Proteopedia is a 3D, interactive encyclopedia of proteins, RNA, DNA and other molecules. With a free user account, you can edit pages in Proteopedia. Visit the Main Page to learn more.

2qm4

From Proteopedia

Jump to: navigation, search
2qm4, resolution 2.30Å ()
Non-Standard Residues:
Gene: NHEJ1, XLF (Homo sapiens)
Related: 1fu1, 1ik9
Resources: FirstGlance, OCA, RCSB, PDBsum
Coordinates: save as pdb, mmCIF, xml


Contents

Crystal structure of human XLF/Cernunnos, a non-homologous end-joining factor

Publication Abstract from PubMed

The recently characterised 299-residue human XLF/Cernunnos protein plays a crucial role in DNA repair by non-homologous end joining (NHEJ) and interacts with the XRCC4-DNA Ligase IV complex. Here, we report the crystal structure of the XLF (1-233) homodimer at 2.3 A resolution, confirming the predicted structural similarity to XRCC4. The XLF coiled-coil, however, is shorter than that of XRCC4 and undergoes an unexpected reverse in direction giving rise to a short distorted four helical bundle and a C-terminal helical structure wedged between the coiled-coil and head domain. The existence of a dimer as the major species is confirmed by size-exclusion chromatography, analytical ultracentrifugation, small-angle X-ray scattering and other biophysical methods. We show that the XLF structure is not easily compatible with a proposed XRCC4:XLF heterodimer. However, we demonstrate interactions between dimers of XLF and XRCC4 by surface plasmon resonance and analyse these in terms of surface properties, amino-acid conservation and mutations in immunodeficient patients. Our data are most consistent with head-to-head interactions in a 2:2:1 XRCC4:XLF:Ligase IV complex.

Crystal structure of human XLF/Cernunnos reveals unexpected differences from XRCC4 with implications for NHEJ., Li Y, Chirgadze DY, Bolanos-Garcia VM, Sibanda BL, Davies OR, Ahnesorg P, Jackson SP, Blundell TL, EMBO J. 2008 Jan 9;27(1):290-300. Epub 2007 Nov 29. PMID:18046455

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Disease

[NHEJ1_HUMAN] Defects in NHEJ1 are the cause of severe combined immunodeficiency due to NHEJ1 deficiency (NHEJ1-SCID) [MIM:611291]; also known as autosomal recessive T-cell-negative, B-cell-negative, NK cell-positive, severe combined immunodeficiency with microcephaly, growth retardation and sensitivity to ionizing radiation or NHEJ1 syndrome. SCID refers to a genetically and clinically heterogeneous group of rare congenital disorders characterized by impairment of both humoral and cell-mediated immunity, leukopenia and low or absent antibody levels. Patients with SCID present in infancy with recurrent, persistent infections by opportunistic organisms. The common characteristic of all types of SCID is absence of T-cell-mediated cellular immunity due to a defect in T-cell development. NHEJ1-SCID is characterized by a profound T- and B-lymphocytopenia associated with increased cellular sensitivity to ionizing radiation, microcephaly and growth retardation. Some patients may manifest SCID with sensitivity to ionizing radiation without microcephaly and mild growth retardation, probably due to hypomorphic NHEJ1 mutations.[1][2][3][4] Note=A chromosomal aberration involving NHEJ1 is found in a patient with polymicrogyria. Translocation t(2;7)(q35;p22).[5]

Function

[NHEJ1_HUMAN] DNA repair protein involved in DNA nonhomologous end joining (NHEJ) required for double-strand break (DSB) repair and V(D)J recombination. May serve as a bridge between XRCC4 and the other NHEJ factors located at DNA ends, or may participate in reconfiguration of the end bound NHEJ factors to allow XRCC4 access to the DNA termini. It may act in concert with XRCC6/XRCC5 (Ku) to stimulate XRCC4-mediated joining of blunt ends and several types of mismatched ends that are noncomplementary or partially complementary.[6][7][8]

About this Structure

2qm4 is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.

Reference

  • Li Y, Chirgadze DY, Bolanos-Garcia VM, Sibanda BL, Davies OR, Ahnesorg P, Jackson SP, Blundell TL. Crystal structure of human XLF/Cernunnos reveals unexpected differences from XRCC4 with implications for NHEJ. EMBO J. 2008 Jan 9;27(1):290-300. Epub 2007 Nov 29. PMID:18046455
  1. Buck D, Malivert L, de Chasseval R, Barraud A, Fondaneche MC, Sanal O, Plebani A, Stephan JL, Hufnagel M, le Deist F, Fischer A, Durandy A, de Villartay JP, Revy P. Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell. 2006 Jan 27;124(2):287-99. PMID:16439204 doi:S0092-8674(06)00002-X
  2. Ahnesorg P, Smith P, Jackson SP. XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell. 2006 Jan 27;124(2):301-13. PMID:16439205 doi:S0092-8674(06)00003-1
  3. Lu H, Pannicke U, Schwarz K, Lieber MR. Length-dependent binding of human XLF to DNA and stimulation of XRCC4.DNA ligase IV activity. J Biol Chem. 2007 Apr 13;282(15):11155-62. Epub 2007 Feb 21. PMID:17317666 doi:M609904200
  4. Dai Y, Kysela B, Hanakahi LA, Manolis K, Riballo E, Stumm M, Harville TO, West SC, Oettinger MA, Jeggo PA. Nonhomologous end joining and V(D)J recombination require an additional factor. Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2462-7. Epub 2003 Feb 25. PMID:12604777 doi:10.1073/pnas.0437964100
  5. Dai Y, Kysela B, Hanakahi LA, Manolis K, Riballo E, Stumm M, Harville TO, West SC, Oettinger MA, Jeggo PA. Nonhomologous end joining and V(D)J recombination require an additional factor. Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2462-7. Epub 2003 Feb 25. PMID:12604777 doi:10.1073/pnas.0437964100
  6. Buck D, Malivert L, de Chasseval R, Barraud A, Fondaneche MC, Sanal O, Plebani A, Stephan JL, Hufnagel M, le Deist F, Fischer A, Durandy A, de Villartay JP, Revy P. Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell. 2006 Jan 27;124(2):287-99. PMID:16439204 doi:S0092-8674(06)00002-X
  7. Ahnesorg P, Smith P, Jackson SP. XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell. 2006 Jan 27;124(2):301-13. PMID:16439205 doi:S0092-8674(06)00003-1
  8. Tsai CJ, Kim SA, Chu G. Cernunnos/XLF promotes the ligation of mismatched and noncohesive DNA ends. Proc Natl Acad Sci U S A. 2007 May 8;104(19):7851-6. Epub 2007 Apr 30. PMID:17470781 doi:0702620104

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools