3gxe

From Proteopedia

Jump to: navigation, search
3gxe, resolution 2.60Å ()
Ligands: ,
Non-Standard Residues: ,
Gene: FN (HUMAN)
Related: 3ejh


Resources: FirstGlance, OCA, RCSB, PDBsum
Coordinates: save as pdb, mmCIF, xml


Contents

Complex of a Low Affinity Collagen Site with the Fibronectin 8-9FnI Domain Pair

Publication Abstract from PubMed

Despite its biological importance, the interaction between fibronectin (FN) and collagen, two abundant and crucial tissue components, has not been well characterized on a structural level. Here, we analyzed the four interactions formed between epitopes of collagen type I and the collagen-binding fragment (gelatin-binding domain (GBD)) of human FN using solution NMR, fluorescence, and small angle x-ray scattering methods. Collagen association with FN modules (8-9)FnI occurs through a conserved structural mechanism but exhibits a 400-fold disparity in affinity between collagen sites. This disparity is reduced in the full-length GBD, as (6)FnI(1-2)FnII(7)FnI binds a specific collagen epitope next to the weakest (8-9)FnI-binding site. The cooperative engagement of all GBD modules with collagen results in four broadly equipotent FN-collagen interaction sites. Collagen association stabilizes a distinct monomeric GBD conformation in solution, giving further evidence to the view that FN fragments form well defined functional and structural units.

Structural analysis of collagen type I interactions with human fibronectin reveals a cooperative binding mode., Erat MC, Sladek B, Campbell ID, Vakonakis I, J Biol Chem. 2013 Jun 14;288(24):17441-50. doi: 10.1074/jbc.M113.469841. Epub, 2013 May 6. PMID:23653354

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Disease

[FINC_HUMAN] Defects in FN1 are the cause of glomerulopathy with fibronectin deposits type 2 (GFND2) [MIM:601894]; also known as familial glomerular nephritis with fibronectin deposits or fibronectin glomerulopathy. GFND is a genetically heterogeneous autosomal dominant disorder characterized clinically by proteinuria, microscopic hematuria, and hypertension that leads to end-stage renal failure in the second to fifth decade of life.[1] [CO1A1_HUMAN] Defects in COL1A1 are the cause of Caffey disease (CAFFD) [MIM:114000]; also known as infantile cortical hyperostosis. Caffey disease is characterized by an infantile episode of massive subperiosteal new bone formation that typically involves the diaphyses of the long bones, mandible, and clavicles. The involved bones may also appear inflamed, with painful swelling and systemic fever often accompanying the illness. The bone changes usually begin before 5 months of age and resolve before 2 years of age.[2] [3] [4] Defects in COL1A1 are a cause of Ehlers-Danlos syndrome type 1 (EDS1) [MIM:130000]; also known as Ehlers-Danlos syndrome gravis. EDS is a connective tissue disorder characterized by hyperextensible skin, atrophic cutaneous scars due to tissue fragility and joint hyperlaxity. EDS1 is the severe form of classic Ehlers-Danlos syndrome.[5] [6] [7] [8] Defects in COL1A1 are the cause of Ehlers-Danlos syndrome type 7A (EDS7A) [MIM:130060]; also known as autosomal dominant Ehlers-Danlos syndrome type VII. EDS is a connective tissue disorder characterized by hyperextensible skin, atrophic cutaneous scars due to tissue fragility and joint hyperlaxity. EDS7A is marked by bilateral congenital hip dislocation, hyperlaxity of the joints, and recurrent partial dislocations.[9] [10] Defects in COL1A1 are a cause of osteogenesis imperfecta type 1 (OI1) [MIM:166200]. A dominantly inherited connective tissue disorder characterized by bone fragility and blue sclerae. Osteogenesis imperfecta type 1 is non-deforming with normal height or mild short stature, and no dentinogenesis imperfecta.[11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] Defects in COL1A1 are a cause of osteogenesis imperfecta type 2 (OI2) [MIM:166210]; also known as osteogenesis imperfecta congenita. A connective tissue disorder characterized by bone fragility, with many perinatal fractures, severe bowing of long bones, undermineralization, and death in the perinatal period due to respiratory insufficiency. Defects in COL1A1 are a cause of osteogenesis imperfecta type 3 (OI3) [MIM:259420]. A connective tissue disorder characterized by progressively deforming bones, very short stature, a triangular face, severe scoliosis, grayish sclera, and dentinogenesis imperfecta. Defects in COL1A1 are a cause of osteogenesis imperfecta type 4 (OI4) [MIM:166220]; also known as osteogenesis imperfecta with normal sclerae. A connective tissue disorder characterized by moderately short stature, mild to moderate scoliosis, grayish or white sclera and dentinogenesis imperfecta. Genetic variations in COL1A1 are a cause of susceptibility to osteoporosis (OSTEOP) [MIM:166710]; also known as involutional or senile osteoporosis or postmenopausal osteoporosis. Osteoporosis is characterized by reduced bone mass, disruption of bone microarchitecture without alteration in the composition of bone. Osteoporotic bones are more at risk of fracture.[24] [25] [26] [27] Note=A chromosomal aberration involving COL1A1 is found in dermatofibrosarcoma protuberans. Translocation t(17;22)(q22;q13) with PDGF.[28] [29]

Function

[FINC_HUMAN] Fibronectins bind cell surfaces and various compounds including collagen, fibrin, heparin, DNA, and actin. Fibronectins are involved in cell adhesion, cell motility, opsonization, wound healing, and maintenance of cell shape.[30] [31] [32] [33] Anastellin binds fibronectin and induces fibril formation. This fibronectin polymer, named superfibronectin, exhibits enhanced adhesive properties. Both anastellin and superfibronectin inhibit tumor growth, angiogenesis and metastasis. Anastellin activates p38 MAPK and inhibits lysophospholipid signaling.[34] [35] [36] [37] [CO1A1_HUMAN] Type I collagen is a member of group I collagen (fibrillar forming collagen).

About this Structure

3gxe is a 4 chain structure with sequence from Human. Full crystallographic information is available from OCA.

See Also

Reference

  • Erat MC, Sladek B, Campbell ID, Vakonakis I. Structural analysis of collagen type I interactions with human fibronectin reveals a cooperative binding mode. J Biol Chem. 2013 Jun 14;288(24):17441-50. doi: 10.1074/jbc.M113.469841. Epub, 2013 May 6. PMID:23653354 doi:http://dx.doi.org/10.1074/jbc.M113.469841
  1. Castelletti F, Donadelli R, Banterla F, Hildebrandt F, Zipfel PF, Bresin E, Otto E, Skerka C, Renieri A, Todeschini M, Caprioli J, Caruso RM, Artuso R, Remuzzi G, Noris M. Mutations in FN1 cause glomerulopathy with fibronectin deposits. Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2538-43. Epub 2008 Feb 11. PMID:18268355 doi:0707730105
  2. Simon MP, Pedeutour F, Sirvent N, Grosgeorge J, Minoletti F, Coindre JM, Terrier-Lacombe MJ, Mandahl N, Craver RD, Blin N, Sozzi G, Turc-Carel C, O'Brien KP, Kedra D, Fransson I, Guilbaud C, Dumanski JP. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet. 1997 Jan;15(1):95-8. PMID:8988177 doi:10.1038/ng0197-95
  3. Sandberg AA, Anderson WD, Fredenberg C, Hashimoto H. Dermatofibrosarcoma protuberans of breast. Cancer Genet Cytogenet. 2003 Apr 1;142(1):56-9. PMID:12660034
  4. Gensure RC, Makitie O, Barclay C, Chan C, Depalma SR, Bastepe M, Abuzahra H, Couper R, Mundlos S, Sillence D, Ala Kokko L, Seidman JG, Cole WG, Juppner H. A novel COL1A1 mutation in infantile cortical hyperostosis (Caffey disease) expands the spectrum of collagen-related disorders. J Clin Invest. 2005 May;115(5):1250-7. PMID:15864348 doi:10.1172/JCI22760
  5. Simon MP, Pedeutour F, Sirvent N, Grosgeorge J, Minoletti F, Coindre JM, Terrier-Lacombe MJ, Mandahl N, Craver RD, Blin N, Sozzi G, Turc-Carel C, O'Brien KP, Kedra D, Fransson I, Guilbaud C, Dumanski JP. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet. 1997 Jan;15(1):95-8. PMID:8988177 doi:10.1038/ng0197-95
  6. Sandberg AA, Anderson WD, Fredenberg C, Hashimoto H. Dermatofibrosarcoma protuberans of breast. Cancer Genet Cytogenet. 2003 Apr 1;142(1):56-9. PMID:12660034
  7. Nuytinck L, Freund M, Lagae L, Pierard GE, Hermanns-Le T, De Paepe A. Classical Ehlers-Danlos syndrome caused by a mutation in type I collagen. Am J Hum Genet. 2000 Apr;66(4):1398-402. Epub 2000 Mar 17. PMID:10739762 doi:S0002-9297(07)60165-7
  8. Malfait F, Symoens S, De Backer J, Hermanns-Le T, Sakalihasan N, Lapiere CM, Coucke P, De Paepe A. Three arginine to cysteine substitutions in the pro-alpha (I)-collagen chain cause Ehlers-Danlos syndrome with a propensity to arterial rupture in early adulthood. Hum Mutat. 2007 Apr;28(4):387-95. PMID:17211858 doi:10.1002/humu.20455
  9. Simon MP, Pedeutour F, Sirvent N, Grosgeorge J, Minoletti F, Coindre JM, Terrier-Lacombe MJ, Mandahl N, Craver RD, Blin N, Sozzi G, Turc-Carel C, O'Brien KP, Kedra D, Fransson I, Guilbaud C, Dumanski JP. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet. 1997 Jan;15(1):95-8. PMID:8988177 doi:10.1038/ng0197-95
  10. Sandberg AA, Anderson WD, Fredenberg C, Hashimoto H. Dermatofibrosarcoma protuberans of breast. Cancer Genet Cytogenet. 2003 Apr 1;142(1):56-9. PMID:12660034
  11. Simon MP, Pedeutour F, Sirvent N, Grosgeorge J, Minoletti F, Coindre JM, Terrier-Lacombe MJ, Mandahl N, Craver RD, Blin N, Sozzi G, Turc-Carel C, O'Brien KP, Kedra D, Fransson I, Guilbaud C, Dumanski JP. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet. 1997 Jan;15(1):95-8. PMID:8988177 doi:10.1038/ng0197-95
  12. Sandberg AA, Anderson WD, Fredenberg C, Hashimoto H. Dermatofibrosarcoma protuberans of breast. Cancer Genet Cytogenet. 2003 Apr 1;142(1):56-9. PMID:12660034
  13. Labhard ME, Wirtz MK, Pope FM, Nicholls AC, Hollister DW. A cysteine for glycine substitution at position 1017 in an alpha 1(I) chain of type I collagen in a patient with mild dominantly inherited osteogenesis imperfecta. Mol Biol Med. 1988 Dec;5(3):197-207. PMID:3244312
  14. Starman BJ, Eyre D, Charbonneau H, Harrylock M, Weis MA, Weiss L, Graham JM Jr, Byers PH. Osteogenesis imperfecta. The position of substitution for glycine by cysteine in the triple helical domain of the pro alpha 1(I) chains of type I collagen determines the clinical phenotype. J Clin Invest. 1989 Oct;84(4):1206-14. PMID:2794057 doi:http://dx.doi.org/10.1172/JCI114286
  15. Deak SB, Scholz PM, Amenta PS, Constantinou CD, Levi-Minzi SA, Gonzalez-Lavin L, Mackenzie JW. The substitution of arginine for glycine 85 of the alpha 1(I) procollagen chain results in mild osteogenesis imperfecta. The mutation provides direct evidence for three discrete domains of cooperative melting of intact type I collagen. J Biol Chem. 1991 Nov 15;266(32):21827-32. PMID:1718984
  16. Mottes M, Sangalli A, Valli M, Gomez Lira M, Tenni R, Buttitta P, Pignatti PF, Cetta G. Mild dominant osteogenesis imperfecta with intrafamilial variability: the cause is a serine for glycine alpha 1(I) 901 substitution in a type-I collagen gene. Hum Genet. 1992 Jul;89(5):480-4. PMID:1634225
  17. Shapiro JR, Stover ML, Burn VE, McKinstry MB, Burshell AL, Chipman SD, Rowe DW. An osteopenic nonfracture syndrome with features of mild osteogenesis imperfecta associated with the substitution of a cysteine for glycine at triple helix position 43 in the pro alpha 1(I) chain of type I collagen. J Clin Invest. 1992 Feb;89(2):567-73. PMID:1737847 doi:http://dx.doi.org/10.1172/JCI115622
  18. Valli M, Zolezzi F, Mottes M, Antoniazzi F, Stanzial F, Tenni R, Pignatti P, Cetta G. Gly85 to Val substitution in pro alpha 1(I) chain causes mild osteogenesis imperfecta and introduces a susceptibility to protease digestion. Eur J Biochem. 1993 Oct 1;217(1):77-82. PMID:8223589
  19. Lee KS, Song HR, Cho TJ, Kim HJ, Lee TM, Jin HS, Park HY, Kang S, Jung SC, Koo SK. Mutational spectrum of type I collagen genes in Korean patients with osteogenesis imperfecta. Hum Mutat. 2006 Jun;27(6):599. PMID:16705691 doi:10.1002/humu.9423
  20. Pollitt R, McMahon R, Nunn J, Bamford R, Afifi A, Bishop N, Dalton A. Mutation analysis of COL1A1 and COL1A2 in patients diagnosed with osteogenesis imperfecta type I-IV. Hum Mutat. 2006 Jul;27(7):716. PMID:16786509 doi:10.1002/humu.9430
  21. Wang Z, Xu DL, Chen Z, Hu JY, Yang Z, Wang LT. [A new mutation in COL1A1 gene in a family with osteogenesis imperfecta]. Zhonghua Yi Xue Za Zhi. 2006 Jan 17;86(3):170-3. PMID:16638323
  22. Kataoka K, Ogura E, Hasegawa K, Inoue M, Seino Y, Morishima T, Tanaka H. Mutations in type I collagen genes in Japanese osteogenesis imperfecta patients. Pediatr Int. 2007 Oct;49(5):564-9. PMID:17875077 doi:10.1111/j.1442-200X.2007.02422.x
  23. Witecka J, Augusciak-Duma AM, Kruczek A, Szydlo A, Lesiak M, Krzak M, Pietrzyk JJ, Mannikko M, Sieron AL. Two novel COL1A1 mutations in patients with osteogenesis imperfecta (OI) affect the stability of the collagen type I triple-helix. J Appl Genet. 2008;49(3):283-95. doi: 10.1007/BF03195625. PMID:18670065 doi:10.1007/BF03195625
  24. Simon MP, Pedeutour F, Sirvent N, Grosgeorge J, Minoletti F, Coindre JM, Terrier-Lacombe MJ, Mandahl N, Craver RD, Blin N, Sozzi G, Turc-Carel C, O'Brien KP, Kedra D, Fransson I, Guilbaud C, Dumanski JP. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet. 1997 Jan;15(1):95-8. PMID:8988177 doi:10.1038/ng0197-95
  25. Sandberg AA, Anderson WD, Fredenberg C, Hashimoto H. Dermatofibrosarcoma protuberans of breast. Cancer Genet Cytogenet. 2003 Apr 1;142(1):56-9. PMID:12660034
  26. Grant SF, Reid DM, Blake G, Herd R, Fogelman I, Ralston SH. Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I alpha 1 gene. Nat Genet. 1996 Oct;14(2):203-5. PMID:8841196 doi:10.1038/ng1096-203
  27. Uitterlinden AG, Burger H, Huang Q, Yue F, McGuigan FE, Grant SF, Hofman A, van Leeuwen JP, Pols HA, Ralston SH. Relation of alleles of the collagen type Ialpha1 gene to bone density and the risk of osteoporotic fractures in postmenopausal women. N Engl J Med. 1998 Apr 9;338(15):1016-21. PMID:9535665
  28. Simon MP, Pedeutour F, Sirvent N, Grosgeorge J, Minoletti F, Coindre JM, Terrier-Lacombe MJ, Mandahl N, Craver RD, Blin N, Sozzi G, Turc-Carel C, O'Brien KP, Kedra D, Fransson I, Guilbaud C, Dumanski JP. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet. 1997 Jan;15(1):95-8. PMID:8988177 doi:10.1038/ng0197-95
  29. Sandberg AA, Anderson WD, Fredenberg C, Hashimoto H. Dermatofibrosarcoma protuberans of breast. Cancer Genet Cytogenet. 2003 Apr 1;142(1):56-9. PMID:12660034
  30. Morla A, Zhang Z, Ruoslahti E. Superfibronectin is a functionally distinct form of fibronectin. Nature. 1994 Jan 13;367(6459):193-6. PMID:8114919 doi:http://dx.doi.org/10.1038/367193a0
  31. Yi M, Ruoslahti E. A fibronectin fragment inhibits tumor growth, angiogenesis, and metastasis. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):620-4. PMID:11209058 doi:10.1073/pnas.98.2.620
  32. Ambesi A, Klein RM, Pumiglia KM, McKeown-Longo PJ. Anastellin, a fragment of the first type III repeat of fibronectin, inhibits extracellular signal-regulated kinase and causes G(1) arrest in human microvessel endothelial cells. Cancer Res. 2005 Jan 1;65(1):148-56. PMID:15665290
  33. You R, Klein RM, Zheng M, McKeown-Longo PJ. Regulation of p38 MAP kinase by anastellin is independent of anastellin's effect on matrix fibronectin. Matrix Biol. 2009 Mar;28(2):101-9. doi: 10.1016/j.matbio.2009.01.003. Epub 2009, Feb 4. PMID:19379667 doi:10.1016/j.matbio.2009.01.003
  34. Morla A, Zhang Z, Ruoslahti E. Superfibronectin is a functionally distinct form of fibronectin. Nature. 1994 Jan 13;367(6459):193-6. PMID:8114919 doi:http://dx.doi.org/10.1038/367193a0
  35. Yi M, Ruoslahti E. A fibronectin fragment inhibits tumor growth, angiogenesis, and metastasis. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):620-4. PMID:11209058 doi:10.1073/pnas.98.2.620
  36. Ambesi A, Klein RM, Pumiglia KM, McKeown-Longo PJ. Anastellin, a fragment of the first type III repeat of fibronectin, inhibits extracellular signal-regulated kinase and causes G(1) arrest in human microvessel endothelial cells. Cancer Res. 2005 Jan 1;65(1):148-56. PMID:15665290
  37. You R, Klein RM, Zheng M, McKeown-Longo PJ. Regulation of p38 MAP kinase by anastellin is independent of anastellin's effect on matrix fibronectin. Matrix Biol. 2009 Mar;28(2):101-9. doi: 10.1016/j.matbio.2009.01.003. Epub 2009, Feb 4. PMID:19379667 doi:10.1016/j.matbio.2009.01.003

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools