4wvp

From Proteopedia

Jump to: navigation, search

Crystal structure of an activity-based probe HNE complex

Structural highlights

4wvp is a 2 chain structure with sequence from Homo sapiens and Synthetic construct. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.63Å
Ligands:3V2, 3V3, BMA, BTN, EDO, FUC, NAG, NLB, OIC, OMT, SO4
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

ELNE_HUMAN Defects in ELANE are a cause of cyclic haematopoiesis (CH) [MIM:162800; also known as cyclic neutropenia. CH is an autosomal dominant disease in which blood-cell production from the bone marrow oscillates with 21-day periodicity. Circulating neutrophils vary between almost normal numbers and zero. During intervals of neutropenia, affected individuals are at risk for opportunistic infection. Monocytes, platelets, lymphocytes and reticulocytes also cycle with the same frequency.[1] [2] Defects in ELANE are the cause of neutropenia severe congenital autosomal dominant type 1 (SCN1) [MIM:202700. SCN1 is a disorder of hematopoiesis characterized by a maturation arrest of granulopoiesis at the level of promyelocytes with peripheral blood absolute neutrophil counts below 0.5 x 10(9)/l and early onset of severe bacterial infections.[3]

Function

ELNE_HUMAN Modifies the functions of natural killer cells, monocytes and granulocytes. Inhibits C5a-dependent neutrophil enzyme release and chemotaxis.[4]

Publication Abstract from PubMed

Human neutrophil elastase (HNE) plays a central role in neutrophil host defense, but its broad specificity makes HNE a difficult target for both inhibitor and probe development. Recently, we identified the unnatural amino acid containing activity-based probe PK101, which exhibits astounding sensitivity and selectivity for HNE, yet completely lacks mechanistic explanation for its unique characteristics. Here, we present the crystal structure of the HNE-PK101 complex which not only reveals the basis for PK101 ultrasensitivity but also uncovers so far unrecognized HNE features. Strikingly, the Nle(O-Bzl) function in the P4 position of PK101 reveals and leverages an "exo-pocket" on HNE as a critical factor for selectivity. Furthermore, the PK101 P3 position harbors a methionine dioxide function, which mimics a post-translationally oxidized methionine residue and forms a critical hydrogen bond to the backbone amide of Gly219 of HNE. Gly219 resides in a Gly-Gly motif that is unique to HNE, yet compulsory for this interaction. Consequently, this feature enables HNE to accommodate substrates that have undergone methionine oxidation, which constitutes a hallmark post-translational modification of neutrophil signaling.

The Elastase-PK101 Structure: Mechanism of an Ultrasensitive Activity-based Probe Revealed.,Lechtenberg BC, Kasperkiewicz P, Robinson H, Drag M, Riedl SJ ACS Chem Biol. 2015 Jan 22. PMID:25581168[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
No citations found

See Also

References

  1. Duan Z, Li FQ, Wechsler J, Meade-White K, Williams K, Benson KF, Horwitz M. A novel notch protein, N2N, targeted by neutrophil elastase and implicated in hereditary neutropenia. Mol Cell Biol. 2004 Jan;24(1):58-70. PMID:14673143
  2. Horwitz M, Benson KF, Person RE, Aprikyan AG, Dale DC. Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat Genet. 1999 Dec;23(4):433-6. PMID:10581030 doi:10.1038/70544
  3. Germeshausen M, Zeidler C, Stuhrmann M, Lanciotti M, Ballmaier M, Welte K. Digenic mutations in severe congenital neutropenia. Haematologica. 2010 Jul;95(7):1207-10. doi: 10.3324/haematol.2009.017665. Epub, 2010 Mar 10. PMID:20220065 doi:10.3324/haematol.2009.017665
  4. Tralau T, Meyer-Hoffert U, Schroder JM, Wiedow O. Human leukocyte elastase and cathepsin G are specific inhibitors of C5a-dependent neutrophil enzyme release and chemotaxis. Exp Dermatol. 2004 May;13(5):316-25. PMID:15140022 doi:10.1111/j.0906-6705.2004.00145.x
  5. Lechtenberg BC, Kasperkiewicz P, Robinson H, Drag M, Riedl SJ. The Elastase-PK101 Structure: Mechanism of an Ultrasensitive Activity-based Probe Revealed. ACS Chem Biol. 2015 Jan 22. PMID:25581168 doi:http://dx.doi.org/10.1021/cb500909n

Contents


PDB ID 4wvp

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools