6y9g
From Proteopedia
Crystal structure of putative ancestral haloalkane dehalogenase AncHLD5 (node 5)
Structural highlights
Publication Abstract from PubMedAncestral sequence reconstruction is a powerful method for inferring ancestors of modern enzymes and for studying structure-function relationships of enzymes. We have previously applied this approach to haloalkane dehalogenases (HLDs) from the subfamily HLD-II and obtained thermodynamically highly stabilized enzymes (DeltaT m up to 24 degrees C), showing improved catalytic properties. Here we combined crystallographic structural analysis and computational molecular dynamics simulations to gain insight into the mechanisms by which ancestral HLDs became more robust enzymes with novel catalytic properties. Reconstructed ancestors exhibited similar structure topology as their descendants with the exception of a few loop deviations. Strikingly, molecular dynamics simulations revealed restricted conformational dynamics of ancestral enzymes, which prefer a single state, in contrast to modern enzymes adopting two different conformational states. The restricted dynamics can potentially be linked to their exceptional stabilization. The study provides molecular insights into protein stabilization due to ancestral sequence reconstruction, which is becoming a widely used approach for obtaining robust protein catalysts. Structures of hyperstable ancestral haloalkane dehalogenases show restricted conformational dynamics.,Babkova P, Dunajova Z, Chaloupkova R, Damborsky J, Bednar D, Marek M Comput Struct Biotechnol J. 2020 Jun 19;18:1497-1508. doi:, 10.1016/j.csbj.2020.06.021. eCollection 2020. PMID:32637047[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|