Proteins from Mycobacterium tuberculosis

From Proteopedia

Jump to: navigation, search
Drag the structure with the mouse to rotate

References

  1. Lazo EO, Jakoncic J, RoyChowdhury S, Awasthi D, Ojima I. Novel T9 loop conformation of filamenting temperature-sensitive mutant Z from Mycobacterium tuberculosis. Acta Crystallogr F Struct Biol Commun. 2019 May 1;75(Pt 5):359-367. doi:, 10.1107/S2053230X19004618. Epub 2019 Apr 24. PMID:31045565 doi:http://dx.doi.org/10.1107/S2053230X19004618
  2. Ko TP, Xiao X, Guo RT, Huang JW, Liu W, Chen CC. Substrate-analogue complex structure of Mycobacterium tuberculosis decaprenyl diphosphate synthase. Acta Crystallogr F Struct Biol Commun. 2019 Apr 1;75(Pt 4):212-216. PMID:30950820 doi:10.1107/S2053230X19001213
  3. Gupta AK, Behera D, Gopal B. The crystal structure of Mycobacterium tuberculosis high-temperature requirement A protein reveals an autoregulatory mechanism. Acta Crystallogr F Struct Biol Commun. 2018 Dec 1;74(Pt 12):803-809. doi:, 10.1107/S2053230X18016217. Epub 2018 Nov 29. PMID:30511675 doi:http://dx.doi.org/10.1107/S2053230X18016217
  4. Hasenbein S, Meltzer M, Hauske P, Kaiser M, Huber R, Clausen T, Ehrmann M. Conversion of a regulatory into a degradative protease. J Mol Biol. 2010 Apr 9;397(4):957-66. doi: 10.1016/j.jmb.2010.02.027. Epub 2010, Feb 22. PMID:20184896 doi:http://dx.doi.org/10.1016/j.jmb.2010.02.027
  5. Sohn J, Grant RA, Sauer RT. OMP peptides activate the DegS stress-sensor protease by a relief of inhibition mechanism. Structure. 2009 Oct 14;17(10):1411-21. PMID:19836340 doi:10.1016/j.str.2009.07.017
  6. Ash EL, Sudmeier JL, Day RM, Vincent M, Torchilin EV, Haddad KC, Bradshaw EM, Sanford DG, Bachovchin WW. Unusual 1H NMR chemical shifts support (His) C(epsilon) 1...O==C H-bond: proposal for reaction-driven ring flip mechanism in serine protease catalysis. Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10371-6. PMID:10984533
  7. Radisky ES, Lee JM, Lu CJ, Koshland DE Jr. Insights into the serine protease mechanism from atomic resolution structures of trypsin reaction intermediates. Proc Natl Acad Sci U S A. 2006 May 2;103(18):6835-40. Epub 2006 Apr 24. PMID:16636277
  8. Dym O, Albeck S, Peleg Y, Schwarz A, Shakked Z, Burstein Y, Zimhony O. Structure-function analysis of the acyl carrier protein synthase (AcpS) from Mycobacterium tuberculosis. J Mol Biol. 2009 Nov 6;393(4):937-50. Epub 2009 Sep 3. PMID:19733180 doi:10.1016/j.jmb.2009.08.065
  9. Rajendran V, Sethumadhavan R. Drug resistance mechanism of PncA in Mycobacterium tuberculosis. J Biomol Struct Dyn. 2013 Feb 6. PMID:23383724 doi:10.1080/07391102.2012.759885
  10. Freundlich JS, Wang F, Vilcheze C, Gulten G, Langley R, Schiehser GA, Jacobus DP, Jacobs WR Jr, Sacchettini JC. Triclosan Derivatives: Towards Potent Inhibitors of Drug-Sensitive and Drug-Resistant Mycobacterium tuberculosis. ChemMedChem. 2009 Jan 7. PMID:19130456 doi:10.1002/cmdc.200800261
  11. Bennett M, Hogbom M. Crystal structure of the essential biotin-dependent carboxylase AccA3 from Mycobacterium tuberculosis. FEBS Open Bio. 2017 Apr 4;7(5):620-626. doi: 10.1002/2211-5463.12212. eCollection, 2017 May. PMID:28469974 doi:http://dx.doi.org/10.1002/2211-5463.12212
  12. Chou CY, Yu LP, Tong L. Crystal structure of biotin carboxylase in complex with substrates and implications for its catalytic mechanism. J Biol Chem. 2009 Apr 24;284(17):11690-7. Epub 2009 Feb 12. PMID:19213731 doi:10.1074/jbc.M805783200
  13. Waldrop GL, Rayment I, Holden HM. Three-dimensional structure of the biotin carboxylase subunit of acetyl-CoA carboxylase. Biochemistry. 1994 Aug 30;33(34):10249-56. PMID:7915138
  14. Kondo S, Nakajima Y, Sugio S, Sueda S, Islam MN, Kondo H. Structure of the biotin carboxylase domain of pyruvate carboxylase from Bacillus thermodenitrificans. Acta Crystallogr D Biol Crystallogr. 2007 Aug;63(Pt 8):885-90. Epub 2007, Jul 17. PMID:17642515 doi:10.1107/S0907444907029423

Proteopedia Page Contributors and Editors (what is this?)

Alexander Berchansky

Personal tools