User:Patrick Wiencek/AHNAK

From Proteopedia

Jump to: navigation, search

AHNAK

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 Davis TA, Loos B, Engelbrecht AM. AHNAK: the giant jack of all trades. Cell Signal. 2014 Dec;26(12):2683-93. doi: 10.1016/j.cellsig.2014.08.017. Epub, 2014 Aug 27. PMID:25172424 doi:http://dx.doi.org/10.1016/j.cellsig.2014.08.017
  2. 2.0 2.1 2.2 Hashimoto T, Amagai M, Parry DA, Dixon TW, Tsukita S, Tsukita S, Miki K, Sakai K, Inokuchi Y, Kudoh J, et al.. Desmoyokin, a 680 kDa keratinocyte plasma membrane-associated protein, is homologous to the protein encoded by human gene AHNAK. J Cell Sci. 1993 Jun;105 ( Pt 2):275-86. PMID:8408266
  3. 3.0 3.1 3.2 Chen B, Wang J, Dai D, Zhou Q, Guo X, Tian Z, Huang X, Yang L, Tang H, Xie X. AHNAK suppresses tumour proliferation and invasion by targeting multiple pathways in triple-negative breast cancer. J Exp Clin Cancer Res. 2017 May 12;36(1):65. doi: 10.1186/s13046-017-0522-4. PMID:28494797 doi:http://dx.doi.org/10.1186/s13046-017-0522-4
  4. 4.0 4.1 4.2 Zhao Z, Xiao S, Yuan X, Yuan J, Zhang C, Li H, Su J, Wang X, Liu Q. AHNAK as a Prognosis Factor Suppresses the Tumor Progression in Glioma. J Cancer. 2017 Aug 25;8(15):2924-2932. doi: 10.7150/jca.20277. eCollection 2017. PMID:28928883 doi:http://dx.doi.org/10.7150/jca.20277
  5. Davis T, van Niekerk G, Peres J, Prince S, Loos B, Engelbrecht AM. Doxorubicin resistance in breast cancer: A novel role for the human protein AHNAK. Biochem Pharmacol. 2018 Feb;148:174-183. doi: 10.1016/j.bcp.2018.01.012. Epub, 2018 Jan 5. PMID:29309757 doi:http://dx.doi.org/10.1016/j.bcp.2018.01.012
  6. 6.0 6.1 6.2 6.3 Sussman J, Stokoe D, Ossina N, Shtivelman E. Protein kinase B phosphorylates AHNAK and regulates its subcellular localization. J Cell Biol. 2001 Sep 3;154(5):1019-30. doi: 10.1083/jcb.200105121. PMID:11535620 doi:http://dx.doi.org/10.1083/jcb.200105121
  7. 7.0 7.1 7.2 7.3 Benaud C, Gentil BJ, Assard N, Court M, Garin J, Delphin C, Baudier J. AHNAK interaction with the annexin 2/S100A10 complex regulates cell membrane cytoarchitecture. J Cell Biol. 2004 Jan 5;164(1):133-44. doi: 10.1083/jcb.200307098. Epub 2003 Dec , 29. PMID:14699089 doi:http://dx.doi.org/10.1083/jcb.200307098
  8. 8.0 8.1 8.2 Shtivelman E, Cohen FE, Bishop JM. A human gene (AHNAK) encoding an unusually large protein with a 1.2-microns polyionic rod structure. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5472-6. PMID:1608957
  9. 9.0 9.1 9.2 Cell atlas - AHNAK - The Human Protein Atlas. Available at: http://www.proteinatlas.org/ENSG00000124942-AHNAK/cell. (Accessed: 30th April 2018)
  10. 10.0 10.1 10.2 Komuro A, Masuda Y, Kobayashi K, Babbitt R, Gunel M, Flavell RA, Marchesi VT. The AHNAKs are a class of giant propeller-like proteins that associate with calcium channel proteins of cardiomyocytes and other cells. Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4053-8. doi:, 10.1073/pnas.0308619101. Epub 2004 Mar 8. PMID:15007166 doi:http://dx.doi.org/10.1073/pnas.0308619101
  11. Lee HJ, Zheng JJ. PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal. 2010 May 28;8:8. doi: 10.1186/1478-811X-8-8. PMID:20509869 doi:http://dx.doi.org/10.1186/1478-811X-8-8
  12. 12.0 12.1 12.2 12.3 12.4 de Morree A, Droog M, Grand Moursel L, Bisschop IJ, Impagliazzo A, Frants RR, Klooster R, van der Maarel SM. Self-regulated alternative splicing at the AHNAK locus. FASEB J. 2012 Jan;26(1):93-103. doi: 10.1096/fj.11-187971. Epub 2011 Sep 22. PMID:21940993 doi:http://dx.doi.org/10.1096/fj.11-187971
  13. 13.0 13.1 Hohaus A, Person V, Behlke J, Schaper J, Morano I, Haase H. The carboxyl-terminal region of ahnak provides a link between cardiac L-type Ca2+ channels and the actin-based cytoskeleton. FASEB J. 2002 Aug;16(10):1205-16. doi: 10.1096/fj.01-0855com. PMID:12153988 doi:http://dx.doi.org/10.1096/fj.01-0855com
  14. 14.0 14.1 Huang, Y. et al. Calpain 3 is a modulator of the dysferlin protein complex in skeletal muscle. Hum. Mol. Genet. 17, 1855–1866 (2008).
  15. 15.0 15.1 Huang, Y. et al. AHNAK, a novel component of the dysferlin protein complex, redistributes to the cytoplasm with dysferlin during skeletal muscle regeneration. FASEB J. 21, 732–742 (2006).
  16. 16.0 16.1 Stiff T, Shtivelman E, Jeggo P, Kysela B. AHNAK interacts with the DNA ligase IV-XRCC4 complex and stimulates DNA ligase IV-mediated double-stranded ligation. DNA Repair (Amst). 2004 Mar 4;3(3):245-56. doi: 10.1016/j.dnarep.2003.11.001. PMID:15177040 doi:http://dx.doi.org/10.1016/j.dnarep.2003.11.001
  17. EMBOSS Needle < Pairwise Sequence Alignment < EMBL-EBI. Available at: https://www.ebi.ac.uk/Tools/psa/emboss_needle/. (Accessed: 2nd May 2018)
  18. AHNAK - Neuroblast differentiation-associated protein AHNAK - Homo sapiens (Human) - AHNAK gene & protein. Available at: https://www.uniprot.org/uniprot/Q09666#ptm_processing. (Accessed: 1st May 2018)
  19. 19.0 19.1 19.2 Lee IH, Lim HJ, Yoon S, Seong JK, Bae DS, Rhee SG, Bae YS. Ahnak protein activates protein kinase C (PKC) through dissociation of the PKC-protein phosphatase 2A complex. J Biol Chem. 2008 Mar 7;283(10):6312-20. doi: 10.1074/jbc.M706878200. Epub 2008, Jan 3. PMID:18174170 doi:http://dx.doi.org/10.1074/jbc.M706878200
  20. 20.0 20.1 20.2 Sekiya F, Bae YS, Jhon DY, Hwang SC, Rhee SG. AHNAK, a protein that binds and activates phospholipase C-gamma1 in the presence of arachidonic acid. J Biol Chem. 1999 May 14;274(20):13900-7. PMID:10318799
  21. 21.0 21.1 21.2 21.3 21.4 Lee IH, Sohn M, Lim HJ, Yoon S, Oh H, Shin S, Shin JH, Oh SH, Kim J, Lee DK, Noh DY, Bae DS, Seong JK, Bae YS. Ahnak functions as a tumor suppressor via modulation of TGFbeta/Smad signaling pathway. Oncogene. 2014 Sep 18;33(38):4675-84. doi: 10.1038/onc.2014.69. Epub 2014 Mar 24. PMID:24662814 doi:http://dx.doi.org/10.1038/onc.2014.69
  22. Grieve AG, Moss SE, Hayes MJ. Annexin A2 at the interface of actin and membrane dynamics: a focus on its roles in endocytosis and cell polarization. Int J Cell Biol. 2012;2012:852430. doi: 10.1155/2012/852430. Epub 2012 Feb 22. PMID:22505935 doi:http://dx.doi.org/10.1155/2012/852430
  23. 23.0 23.1 Rezvanpour A, Santamaria-Kisiel L, Shaw GS. The S100A10-annexin A2 complex provides a novel asymmetric platform for membrane repair. J Biol Chem. 2011 Nov 18;286(46):40174-83. doi: 10.1074/jbc.M111.244038. Epub, 2011 Sep 26. PMID:21949189 doi:http://dx.doi.org/10.1074/jbc.M111.244038
  24. Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, Blalock WL, Franklin RA, McCubrey JA. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia. 2003 Jul;17(7):1263-93. doi: 10.1038/sj.leu.2402945. PMID:12835716 doi:http://dx.doi.org/10.1038/sj.leu.2402945
  25. Boxberg, Y. V. et al. Spinal cord injury-induced up-regulation of AHNAK, expressed in cells delineating cystic cavities, and associated with neoangiogenesis. Eur. J. Neurosci. 24, 1031–1041 (2006).
  26. Salim C, Boxberg YV, Alterio J, Fereol S, Nothias F. The giant protein AHNAK involved in morphogenesis and laminin substrate adhesion of myelinating Schwann cells. Glia. 2009 Apr 1;57(5):535-49. doi: 10.1002/glia.20782. PMID:18837049 doi:http://dx.doi.org/10.1002/glia.20782
  27. Gentil BJ, Benaud C, Delphin C, Remy C, Berezowski V, Cecchelli R, Feraud O, Vittet D, Baudier J. Specific AHNAK expression in brain endothelial cells with barrier properties. J Cell Physiol. 2005 May;203(2):362-71. doi: 10.1002/jcp.20232. PMID:15493012 doi:http://dx.doi.org/10.1002/jcp.20232
  28. Shin JH, Kim YN, Kim IY, Choi DH, Yi SS, Seong JK. Increased Cell Proliferations and Neurogenesis in the Hippocampal Dentate Gyrus of Ahnak Deficient Mice. Neurochem Res. 2015 Jul;40(7):1457-62. doi: 10.1007/s11064-015-1615-0. Epub 2015 , May 26. PMID:26007245 doi:http://dx.doi.org/10.1007/s11064-015-1615-0
  29. 29.0 29.1 29.2 Dempsey BR, Rezvanpour A, Lee TW, Barber KR, Junop MS, Shaw GS. Structure of an asymmetric ternary protein complex provides insight for membrane interaction. Structure. 2012 Oct 10;20(10):1737-45. doi: 10.1016/j.str.2012.08.004. Epub 2012 , Aug 30. PMID:22940583 doi:http://dx.doi.org/10.1016/j.str.2012.08.004
  30. Alvarez J, Hamplova J, Hohaus A, Morano I, Haase H, Vassort G. Calcium current in rat cardiomyocytes is modulated by the carboxyl-terminal ahnak domain. J Biol Chem. 2004 Mar 26;279(13):12456-61. doi: 10.1074/jbc.M312177200. Epub 2004, Jan 12. PMID:14722071 doi:http://dx.doi.org/10.1074/jbc.M312177200
  31. Matza D, Badou A, Kobayashi KS, Goldsmith-Pestana K, Masuda Y, Komuro A, McMahon-Pratt D, Marchesi VT, Flavell RA. A scaffold protein, AHNAK1, is required for calcium signaling during T cell activation. Immunity. 2008 Jan;28(1):64-74. doi: 10.1016/j.immuni.2007.11.020. PMID:18191595 doi:http://dx.doi.org/10.1016/j.immuni.2007.11.020
  32. Matza D, Badou A, Jha MK, Willinger T, Antov A, Sanjabi S, Kobayashi KS, Marchesi VT, Flavell RA. Requirement for AHNAK1-mediated calcium signaling during T lymphocyte cytolysis. Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9785-90. doi:, 10.1073/pnas.0902844106. Epub 2009 Jun 2. PMID:19497879 doi:http://dx.doi.org/10.1073/pnas.0902844106
  33. Chien AJ, Zhao X, Shirokov RE, Puri TS, Chang CF, Sun D, Rios E, Hosey MM. Roles of a membrane-localized beta subunit in the formation and targeting of functional L-type Ca2+ channels. J Biol Chem. 1995 Dec 15;270(50):30036-44. doi: 10.1074/jbc.270.50.30036. PMID:8530407 doi:http://dx.doi.org/10.1074/jbc.270.50.30036
  34. 34.0 34.1 Borgonovo B, Cocucci E, Racchetti G, Podini P, Bachi A, Meldolesi J. Regulated exocytosis: a novel, widely expressed system. Nat Cell Biol. 2002 Dec;4(12):955-62. doi: 10.1038/ncb888. PMID:12447386 doi:http://dx.doi.org/10.1038/ncb888
  35. Lennon NJ, Kho A, Bacskai BJ, Perlmutter SL, Hyman BT, Brown RH Jr. Dysferlin interacts with annexins A1 and A2 and mediates sarcolemmal wound-healing. J Biol Chem. 2003 Dec 12;278(50):50466-73. Epub 2003 Sep 23. PMID:14506282 doi:http://dx.doi.org/10.1074/jbc.M307247200
  36. Kouno M, Kondoh G, Horie K, Komazawa N, Ishii N, Takahashi Y, Takeda J, Hashimoto T. Ahnak/Desmoyokin is dispensable for proliferation, differentiation, and maintenance of integrity in mouse epidermis. J Invest Dermatol. 2004 Oct;123(4):700-7. doi: 10.1111/j.0022-202X.2004.23412.x. PMID:15373775 doi:http://dx.doi.org/10.1111/j.0022-202X.2004.23412.x
  37. 37.0 37.1 Su J, Ekman C, Oskolkov N, Lahti L, Strom K, Brazma A, Groop L, Rung J, Hansson O. A novel atlas of gene expression in human skeletal muscle reveals molecular changes associated with aging. Skelet Muscle. 2015 Oct 9;5:35. doi: 10.1186/s13395-015-0059-1. eCollection 2015. PMID:26457177 doi:http://dx.doi.org/10.1186/s13395-015-0059-1
  38. 38.0 38.1 de Magalhaes JP, Curado J, Church GM. Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics. 2009 Apr 1;25(7):875-81. doi: 10.1093/bioinformatics/btp073. Epub, 2009 Feb 2. PMID:19189975 doi:http://dx.doi.org/10.1093/bioinformatics/btp073
  39. 39.0 39.1 Parikh H, Nilsson E, Ling C, Poulsen P, Almgren P, Nittby H, Eriksson KF, Vaag A, Groop LC. Molecular correlates for maximal oxygen uptake and type 1 fibers. Am J Physiol Endocrinol Metab. 2008 Jun;294(6):E1152-9. doi:, 10.1152/ajpendo.90255.2008. Epub 2008 Apr 29. PMID:18445752 doi:http://dx.doi.org/10.1152/ajpendo.90255.2008
  40. 40.0 40.1 40.2 Shankar J, Messenberg A, Chan J, Underhill TM, Foster LJ, Nabi IR. Pseudopodial actin dynamics control epithelial-mesenchymal transition in metastatic cancer cells. Cancer Res. 2010 May 1;70(9):3780-90. doi: 10.1158/0008-5472.CAN-09-4439. Epub, 2010 Apr 13. PMID:20388789 doi:http://dx.doi.org/10.1158/0008-5472.CAN-09-4439
  41. 41.0 41.1 Sudo, H. et al. AHNAK is highly expressed and plays a key role in cell migration and invasion in mesothelioma. Int. J. Oncol. 44, 530–538 (2014).
  42. Heldin CH, Landstrom M, Moustakas A. Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol. 2009 Apr;21(2):166-76. doi: 10.1016/j.ceb.2009.01.021. Epub , 2009 Feb 23. PMID:19237272 doi:http://dx.doi.org/10.1016/j.ceb.2009.01.021
  43. Kim IY, Jung J, Jang M, Ahn YG, Shin JH, Choi JW, Sohn MR, Shin SM, Kang DG, Lee HS, Bae YS, Ryu DH, Seong JK, Hwang GS. 1H NMR-based metabolomic study on resistance to diet-induced obesity in AHNAK knock-out mice. Biochem Biophys Res Commun. 2010 Dec 17;403(3-4):428-34. doi:, 10.1016/j.bbrc.2010.11.048. Epub 2010 Nov 19. PMID:21094140 doi:http://dx.doi.org/10.1016/j.bbrc.2010.11.048
  44. 44.0 44.1 Shin JH, Kim IY, Kim YN, Shin SM, Roh KJ, Lee SH, Sohn M, Cho SY, Lee SH, Ko CY, Kim HS, Choi CS, Bae YS, Seong JK. Obesity Resistance and Enhanced Insulin Sensitivity in Ahnak-/- Mice Fed a High Fat Diet Are Related to Impaired Adipogenesis and Increased Energy Expenditure. PLoS One. 2015 Oct 14;10(10):e0139720. doi: 10.1371/journal.pone.0139720., eCollection 2015. PMID:26466345 doi:http://dx.doi.org/10.1371/journal.pone.0139720
  45. AceView: Gene:AHNAK, a comprehensive annotation of human, mouse and worm genes with mRNAs or ESTsAceView. Available at: https://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/av.cgi?db=human&c=Gene&l=AHNAK. (Accessed: 30th April 2018)
  46. Gillespie CS, Sherman DL, Blair GE, Brophy PJ. Periaxin, a novel protein of myelinating Schwann cells with a possible role in axonal ensheathment. Neuron. 1994 Mar;12(3):497-508. PMID:8155317
  47. Dytrych L, Sherman DL, Gillespie CS, Brophy PJ. Two PDZ domain proteins encoded by the murine periaxin gene are the result of alternative intron retention and are differentially targeted in Schwann cells. J Biol Chem. 1998 Mar 6;273(10):5794-800. PMID:9488714
  48. 48.0 48.1 48.2 Han H, Kursula P. Periaxin and AHNAK nucleoprotein 2 form intertwined homodimers through domain swapping. J Biol Chem. 2014 Mar 27. PMID:24675079 doi:http://dx.doi.org/10.1074/jbc.M114.554816
  49. Ozorowski G, Milton S, Luecke H. Structure of a C-terminal AHNAK peptide in a 1:2:2 complex with S100A10 and an acetylated N-terminal peptide of annexin A2. Acta Crystallogr D Biol Crystallogr. 2013 Jan;69(Pt 1):92-104. doi:, 10.1107/S0907444912043429. Epub 2012 Dec 20. PMID:23275167 doi:http://dx.doi.org/10.1107/S0907444912043429
  50. Oh YS, Gao P, Lee KW, Ceglia I, Seo JS, Zhang X, Ahn JH, Chait BT, Patel DJ, Kim Y, Greengard P. SMARCA3, a Chromatin-Remodeling Factor, Is Required for p11-Dependent Antidepressant Action. Cell. 2013 Feb 14;152(4):831-43. doi: 10.1016/j.cell.2013.01.014. PMID:23415230 doi:http://dx.doi.org/10.1016/j.cell.2013.01.014

Proteopedia Page Contributors and Editors (what is this?)

Patrick Wiencek

Personal tools