| Structural highlights
Function
BACR1_HALWD Light-driven proton pump. The chromophore contains 78% all-trans- and 22% 13-cis-retinal in the dark and 90% all-trans- and 10% 13-cis-retinal upon illumination with >500 nm light.[1] [2] [3]
Publication Abstract from PubMed
In recent years, in situ data collection has been a major focus of progress in protein crystallography. Here, we introduce the Mylar in situ method using Mylar-based sandwich plates that are inexpensive, easy to make and handle, and show significantly less background scattering than other setups. A variety of cognate holders for patches of Mylar in situ sandwich films corresponding to one or more wells makes the method robust and versatile, allows for storage and shipping of entire wells, and enables automated crystal imaging, screening, and goniometer-based X-ray diffraction data-collection at room temperature and under cryogenic conditions for soluble and membrane-protein crystals grown in or transferred to these plates. We validated the Mylar in situ method using crystals of the water-soluble proteins hen egg-white lysozyme and sperm whale myoglobin as well as the 7-transmembrane protein bacteriorhodopsin from Haloquadratum walsbyi. In conjunction with current developments at synchrotrons, this approach promises high-resolution structural studies of membrane proteins to become faster and more routine.
A Versatile System for High-Throughput In Situ X-ray Screening and Data Collection of Soluble and Membrane-Protein Crystals.,Broecker J, Klingel V, Ou WL, Balo AR, Kissick DJ, Ogata CM, Kuo A, Ernst OP Cryst Growth Des. 2016 Nov 2;16(11):6318-6326. doi: 10.1021/acs.cgd.6b00950. Epub, 2016 Oct 3. PMID:28261000[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Sudo Y, Ihara K, Kobayashi S, Suzuki D, Irieda H, Kikukawa T, Kandori H, Homma M. A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties. J Biol Chem. 2011 Feb 25;286(8):5967-76. doi: 10.1074/jbc.M110.190058. Epub 2010 , Dec 6. PMID:21135094 doi:http://dx.doi.org/10.1074/jbc.M110.190058
- ↑ Lobasso S, Lopalco P, Vitale R, Saponetti MS, Capitanio G, Mangini V, Milano F, Trotta M, Corcelli A. The light-activated proton pump Bop I of the archaeon Haloquadratum walsbyi. Photochem Photobiol. 2012 May-Jun;88(3):690-700. doi:, 10.1111/j.1751-1097.2012.01089.x. Epub 2012 Feb 9. PMID:22248212 doi:http://dx.doi.org/10.1111/j.1751-1097.2012.01089.x
- ↑ Sudo Y, Okazaki A, Ono H, Yagasaki J, Sugo S, Kamiya M, Reissig L, Inoue K, Ihara K, Kandori H, Takagi S, Hayashi S. A blue-shifted light-driven proton pump for neural silencing. J Biol Chem. 2013 Jul 12;288(28):20624-32. doi: 10.1074/jbc.M113.475533. Epub, 2013 May 28. PMID:23720753 doi:http://dx.doi.org/10.1074/jbc.M113.475533
- ↑ Broecker J, Klingel V, Ou WL, Balo AR, Kissick DJ, Ogata CM, Kuo A, Ernst OP. A Versatile System for High-Throughput In Situ X-ray Screening and Data Collection of Soluble and Membrane-Protein Crystals. Cryst Growth Des. 2016 Nov 2;16(11):6318-6326. doi: 10.1021/acs.cgd.6b00950. Epub, 2016 Oct 3. PMID:28261000 doi:http://dx.doi.org/10.1021/acs.cgd.6b00950
|