1blz
From Proteopedia
ISOPENICILLIN N SYNTHASE FROM ASPERGILLUS NIDULANS (ACV-FE-NO COMPLEX)
Structural highlights
FunctionIPNA_EMENI Isopenicillin N synthase; part of the gene cluster that mediates the biosynthesis of penicillin, the world's most important antibiotic (PubMed:3319778, PubMed:11755401). IpnA catalyzes the cyclization of the tripeptide N-[(5S)-5-amino-5-carboxypentanoyl]-L-cysteinyl-D-valine (LLD-ACV or ACV) to form isopenicillin N (IPN) that contains the beta-lactam nucleus (PubMed:3319778, PubMed:11755401, PubMed:28703303). The penicillin biosynthesis occurs via 3 enzymatic steps, the first corresponding to the production of the tripeptide N-[(5S)-5-amino-5-carboxypentanoyl]-L-cysteinyl-D-valine (LLD-ACV or ACV) by the NRPS acvA. The tripeptide ACV is then cyclized to isopenicillin N (IPN) by the isopenicillin N synthase ipnA that forms the beta-lactam nucleus. Finally, the alpha-aminoadipyl side chain is exchanged for phenylacetic acid by the isopenicillin N acyltransferase penDE to yield penicillin in the peroxisomal matrix (By similarity).[UniProtKB:P08703][1] [2] [3] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe biosynthesis of penicillin and cephalosporin antibiotics in microorganisms requires the formation of the bicyclic nucleus of penicillin. Isopenicillin N synthase (IPNS), a non-haem iron-dependent oxidase, catalyses the reaction of a tripeptide, delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine (ACV), and dioxygen to form isopenicillin N and two water molecules. Mechanistic studies suggest the reaction is initiated by ligation of the substrate thiolate to the iron centre, and proceeds through an enzyme-bound monocyclic intermediate. Here we report the crystal structure of IPNS complexed to ferrous iron and ACV, determined to 1.3 A resolution. Based on the structure, we propose a mechanism for penicillin formation that involves ligation of ACV to the iron centre, creating a vacant iron coordination site into which dioxygen can bind. Subsequently, iron-dioxygen and iron-oxo species remove the requisite hydrogens from ACV without the direct assistance of protein residues. The crystal structure of the complex with the dioxygen analogue, NO and ACV bound to the active-site iron supports this hypothesis. Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation.,Roach PL, Clifton IJ, Hensgens CM, Shibata N, Schofield CJ, Hajdu J, Baldwin JE Nature. 1997 Jun 19;387(6635):827-30. PMID:9194566[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|