Structural highlights
Function
FEN_BPT5 Catalyzes both the 5'-exonucleolytic and structure-specific endonucleolytic hydrolysis of DNA branched nucleic acid molecules and probably plays a role in viral genome replication (PubMed:9874768, PubMed:15077103, PubMed:10364212). Active on flap (branched duplex DNA containing a free single-stranded 5'-end), 5'overhangs and pseudo-Y structures (PubMed:9874768, PubMed:15077103, PubMed:10364212). The substrates require a free, single-stranded 5' end, with endonucleolytic hydrolysis occurring at the junction of double- and single-stranded DNA (PubMed:9874768). This function may be used for example to trim such branched molecules generated by Okazaki fragments synthesis during replication.[HAMAP-Rule:MF_04140][1] [2] [3]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
See Also
References
- ↑ Pickering TJ, Garforth S, Sayers JR, Grasby JA. Variation in the steady state kinetic parameters of wild type and mutant T5 5'-3'-exonuclease with pH. Protonation of Lys-83 is critical for DNA binding. J Biol Chem. 1999 Jun 18;274(25):17711-7. PMID:10364212
- ↑ Feng M, Patel D, Dervan JJ, Ceska T, Suck D, Haq I, Sayers JR. Roles of divalent metal ions in flap endonuclease-substrate interactions. Nat Struct Mol Biol. 2004 May;11(5):450-6. Epub 2004 Apr 11. PMID:15077103 doi:10.1038/nsmb754
- ↑ Garforth SJ, Ceska TA, Suck D, Sayers JR. Mutagenesis of conserved lysine residues in bacteriophage T5 5'-3' exonuclease suggests separate mechanisms of endo-and exonucleolytic cleavage. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):38-43. PMID:9874768