1h3i

From Proteopedia

Jump to: navigation, search

Crystal structure of the Histone Methyltransferase SET7/9

Structural highlights

1h3i is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.1Å
Ligands:MG
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

SETD7_HUMAN Histone methyltransferase that specifically monomethylates 'Lys-4' of histone H3. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation. Plays a central role in the transcriptional activation of genes such as collagenase or insulin. Recruited by IPF1/PDX-1 to the insulin promoter, leading to activate transcription. Has also methyltransferase activity toward non-histone proteins such as p53/TP53, TAF10, and possibly TAF7 by recognizing and binding the [KR]-[STA]-K in substrate proteins. Monomethylates 'Lys-189' of TAF10, leading to increase the affinity of TAF10 for RNA polymerase II. Monomethylates 'Lys-372' of p53/TP53, stabilizing p53/TP53 and increasing p53/TP53-mediated transcriptional activation.[1] [2] [3] [4] [5] [6]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Methylation of lysine residues in the N-terminal tails of histones is thought to represent an important component of the mechanism that regulates chromatin structure. The evolutionarily conserved SET domain occurs in most proteins known to possess histone lysine methyltransferase activity. We present here the crystal structure of a large fragment of human SET7/9 that contains a N-terminal beta-sheet domain as well as the conserved SET domain. Mutagenesis identifies two residues in the C terminus of the protein that appear essential for catalytic activity toward lysine-4 of histone H3. Furthermore, we show how the cofactor AdoMet binds to this domain and present biochemical data supporting the role of invariant residues in catalysis, binding of AdoMet, and interactions with the peptide substrate.

Crystal structure and functional analysis of the histone methyltransferase SET7/9.,Wilson JR, Jing C, Walker PA, Martin SR, Howell SA, Blackburn GM, Gamblin SJ, Xiao B Cell. 2002 Oct 4;111(1):105-15. PMID:12372304[7]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
No citations found

See Also

References

  1. Martens JH, Verlaan M, Kalkhoven E, Zantema A. Cascade of distinct histone modifications during collagenase gene activation. Mol Cell Biol. 2003 Mar;23(5):1808-16. PMID:12588998
  2. Kouskouti A, Scheer E, Staub A, Tora L, Talianidis I. Gene-specific modulation of TAF10 function by SET9-mediated methylation. Mol Cell. 2004 Apr 23;14(2):175-82. PMID:15099517
  3. Francis J, Chakrabarti SK, Garmey JC, Mirmira RG. Pdx-1 links histone H3-Lys-4 methylation to RNA polymerase II elongation during activation of insulin transcription. J Biol Chem. 2005 Oct 28;280(43):36244-53. Epub 2005 Sep 1. PMID:16141209 doi:M505741200
  4. Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA, Kubicek S, Opravil S, Jenuwein T, Berger SL. Repression of p53 activity by Smyd2-mediated methylation. Nature. 2006 Nov 30;444(7119):629-32. Epub 2006 Nov 15. PMID:17108971 doi:10.1038/nature05287
  5. Xiao B, Jing C, Wilson JR, Walker PA, Vasisht N, Kelly G, Howell S, Taylor IA, Blackburn GM, Gamblin SJ. Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature. 2003 Feb 6;421(6923):652-6. Epub 2003 Jan 22. PMID:12540855 doi:10.1038/nature01378
  6. Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS, McKinney K, Tempst P, Prives C, Gamblin SJ, Barlev NA, Reinberg D. Regulation of p53 activity through lysine methylation. Nature. 2004 Nov 18;432(7015):353-60. Epub 2004 Nov 3. PMID:15525938 doi:10.1038/nature03117
  7. Wilson JR, Jing C, Walker PA, Martin SR, Howell SA, Blackburn GM, Gamblin SJ, Xiao B. Crystal structure and functional analysis of the histone methyltransferase SET7/9. Cell. 2002 Oct 4;111(1):105-15. PMID:12372304

Contents


PDB ID 1h3i

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools