1hnw
From Proteopedia
STRUCTURE OF THE THERMUS THERMOPHILUS 30S RIBOSOMAL SUBUNIT IN COMPLEX WITH TETRACYCLINE
Structural highlights
Function[RS10_THETH] Involved in the binding of tRNA to the ribosomes (By similarity). [RS6_THETH] Located on the outer edge of the platform on the body of the 30S subunit (By similarity). [RSHX_THETH] Binds at the top of the head of the 30S subunit. It stabilizes a number of different RNA elements and thus is important for subunit structure (By similarity). [RS12_THETH] With S4 and S5 plays an important role in translational accuracy (By similarity).[HAMAP-Rule:MF_00403_B] Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit (By similarity).[HAMAP-Rule:MF_00403_B] [RS15_THETH] One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA. Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome (By similarity). [RS5_THETH] With S4 and S12 plays an important role in translational accuracy (By similarity).[HAMAP-Rule:MF_01307_B] Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body (By similarity).[HAMAP-Rule:MF_01307_B] [RS8_THETH] One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit (By similarity). [RS14Z_THETH] Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site (By similarity). [RS19_THETH] Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA (By similarity). [RS7_THET8] One of the primary rRNA binding proteins, it binds directly to 3'-end of the 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center. Binds mRNA and the E site tRNA blocking its exit path in the ribosome. This blockage implies that this section of the ribosome must be able to move to release the deacetylated tRNA.[HAMAP-Rule:MF_00480_B] [RS4_THET8] One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the body and platform of the 30S subunit. Binds mRNA in the 70S ribosome, positioning it for translation.[HAMAP-Rule:MF_01306_B] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedWe have used the recently determined atomic structure of the 30S ribosomal subunit to determine the structures of its complexes with the antibiotics tetracycline, pactamycin, and hygromycin B. The antibiotics bind to discrete sites on the 30S subunit in a manner consistent with much but not all biochemical data. For each of these antibiotics, interactions with the 30S subunit suggest a mechanism for its effects on ribosome function. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit.,Brodersen DE, Clemons WM Jr, Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V Cell. 2000 Dec 22;103(7):1143-54. PMID:11163189[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|