Structural highlights
Function
GNAI1_HUMAN Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The G(i) proteins are involved in hormonal regulation of adenylate cyclase: they inhibit the cyclase in response to beta-adrenergic stimuli. The inactive GDP-bound form prevents the association of RGS14 with centrosomes and is required for the translocation of RGS14 from the cytoplasm to the plasma membrane. May play a role in cell division.[1] [2]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Heterotrimeric G-proteins bind to cell-surface receptors and are integral in transmission of signals from outside the cell. Upon activation of the Galpha subunit by binding of GTP, the Galpha and Gbetagamma subunits dissociate and interact with effector proteins for signal transduction. Regulatory proteins with the 19-amino-acid GoLoco motif can bind to Galpha subunits and maintain G-protein subunit dissociation in the absence of Galpha activation. Here we describe the structural determinants of GoLoco activity as revealed by the crystal structure of Galpha(i1) GDP bound to the GoLoco region of the 'regulator of G-protein signalling' protein RGS14. Key contacts are described between the GoLoco motif and Galpha protein, including the extension of GoLoco's highly conserved Asp/Glu-Gln-Arg triad into the nucleotide-binding pocket of Galpha to make direct contact with the GDP alpha- and beta-phosphates. The structural organization of the GoLoco Galpha(i1) complex, when combined with supporting data from domain-swapping experiments, suggests that the Galpha all-helical domain and GoLoco-region carboxy-terminal residues control the specificity of GoLoco Galpha interactions.
Structural determinants for GoLoco-induced inhibition of nucleotide release by Galpha subunits.,Kimple RJ, Kimple ME, Betts L, Sondek J, Siderovski DP Nature. 2002 Apr 25;416(6883):878-81. PMID:11976690[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Cho H, Kehrl JH. Localization of Gi alpha proteins in the centrosomes and at the midbody: implication for their role in cell division. J Cell Biol. 2007 Jul 16;178(2):245-55. PMID:17635935 doi:10.1083/jcb.200604114
- ↑ Johnston CA, Siderovski DP. Structural basis for nucleotide exchange on G alpha i subunits and receptor coupling specificity. Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):2001-6. Epub 2007 Jan 30. PMID:17264214
- ↑ Kimple RJ, Kimple ME, Betts L, Sondek J, Siderovski DP. Structural determinants for GoLoco-induced inhibition of nucleotide release by Galpha subunits. Nature. 2002 Apr 25;416(6883):878-81. PMID:11976690 doi:http://dx.doi.org/10.1038/416878a