1nmq
From Proteopedia
Extendend Tethering: In Situ Assembly of Inhibitors
Structural highlights
FunctionCASP3_HUMAN Involved in the activation cascade of caspases responsible for apoptosis execution. At the onset of apoptosis it proteolytically cleaves poly(ADP-ribose) polymerase (PARP) at a '216-Asp-|-Gly-217' bond. Cleaves and activates sterol regulatory element binding proteins (SREBPs) between the basic helix-loop-helix leucine zipper domain and the membrane attachment domain. Cleaves and activates caspase-6, -7 and -9. Involved in the cleavage of huntingtin. Triggers cell adhesion in sympathetic neurons through RET cleavage.[1] [2] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedCysteine aspartyl protease-3 (caspase-3) is a mediator of apoptosis and a therapeutic target for a wide range of diseases. Using a dynamic combinatorial technology, 'extended tethering', we identified unique nonpeptidic inhibitors for this enzyme. Extended tethering allowed the identification of ligands that bind to discrete regions of caspase-3 and also helped direct the assembly of these ligands into small-molecule inhibitors. We first designed a small-molecule 'extender' that irreversibly alkylates the cysteine residue of caspase-3 and also contains a thiol group. The modified protein was then screened against a library of disulfide-containing small-molecule fragments. Mass-spectrometry was used to identify ligands that bind noncovalently to the protein and that also form a disulfide linkage with the extender. Linking the selected fragments with binding elements from the extenders generates reversible, tight-binding molecules that are druglike and distinct from known inhibitors. One molecule derived from this approach inhibited apoptosis in cells. In situ assembly of enzyme inhibitors using extended tethering.,Erlanson DA, Lam JW, Wiesmann C, Luong TN, Simmons RL, DeLano WL, Choong IC, Burdett MT, Flanagan WM, Lee D, Gordon EM, O'Brien T Nat Biotechnol. 2003 Mar;21(3):308-14. Epub 2003 Feb 3. PMID:12563278[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Homo sapiens | Large Structures | Choong IC | DeLano W | Erlanson DA | Flanagan M | Lam J | Lee D | Luong TN | O'Brian T | Simmons RL | Wiesmann C