1pgz

From Proteopedia

Jump to: navigation, search

Crystal Structure of UP1 Complexed With d(TTAGGGTTAG(6-MI)G); A Human Telomeric Repeat Containing 6-methyl-8-(2-deoxy-beta-ribofuranosyl)isoxanthopteridine (6-MI)

Structural highlights

1pgz is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.6Å
Ligands:6MI
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

ROA1_HUMAN Amyotrophic lateral sclerosis;Inclusion body myopathy with Paget disease of bone and frontotemporal dementia. The disease is caused by mutations affecting the gene represented in this entry.[1] The disease is caused by mutations affecting the gene represented in this entry.[2]

Function

ROA1_HUMAN Involved in the packaging of pre-mRNA into hnRNP particles, transport of poly(A) mRNA from the nucleus to the cytoplasm and may modulate splice site selection. May play a role in HCV RNA replication.[3]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Heterogeneous ribonucleoprotein A1 (hnRNP A1) is an abundant nuclear protein that participates in RNA processing, alternative splicing, and chromosome maintenance. hnRNP A1 can be proteolyzed to unwinding protein (UP1), a 22.1-kDa protein that retains a high affinity for purine-rich single-stranded nucleic acids, including the human telomeric repeat (hTR) d(TTAGGG)n. Using the structure of UP1 bound to hTR as a guide, we have incorporated the fluorescent guanine analog 6-MI at one of two positions within the DNA to facilitate binding studies. One is where 6-MI remains stacked with an adjacent purine, and another is where it becomes fully unstacked upon UP1 binding. The structures of both modified oligonucleotides complexed to UP1 were determined by x-ray crystallography to validate the efficacy of our design, and 6-MI has proven to be an excellent reporter molecule for single-stranded nucleic acid interactions in positions where there is a change in stacking environment upon complex formation. We have shown that UP1 affinity for d(TTAGGG)2 is approximately 5 nm at 100 mm NaCl, pH 6.0, and our binding studies with d(TTAGG(6-MI)TTAGGG) show that binding is only modestly sensitive to salt and pH. UP1 also has a potent G-tetrad destabilizing activity that reduces the Tm of the hTR sequence d(TAGGGT)4 from 67.0 degrees C to 36.1 degrees C at physiological conditions (150 mm KCl, pH 7.0). Consistent with the structures determined by x-ray crystallography, UP1 is able to bind the hTR sequence in solution as a dimer and supports a model for hnRNP A1 binding to nucleic acids in arrays that may make a contiguous set of anti-parallel single-stranded nucleic acid binding clefts. These data suggest that seemingly disparate roles for hnRNP A1 in alternative splice site selection, RNA processing, RNA transport, and chromosome maintenance reflect its ability to bind a purine-rich consensus sequence (nYAGGn) and destabilize potentially deleterious G-tetrad structures.

Structure-based incorporation of 6-methyl-8-(2-deoxy-beta-ribofuranosyl)isoxanthopteridine into the human telomeric repeat DNA as a probe for UP1 binding and destabilization of G-tetrad structures.,Myers JC, Moore SA, Shamoo Y J Biol Chem. 2003 Oct 24;278(43):42300-6. Epub 2003 Aug 6. PMID:12904298[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, Kanagaraj AP, Carter R, Boylan KB, Wojtas AM, Rademakers R, Pinkus JL, Greenberg SA, Trojanowski JQ, Traynor BJ, Smith BN, Topp S, Gkazi AS, Miller J, Shaw CE, Kottlors M, Kirschner J, Pestronk A, Li YR, Ford AF, Gitler AD, Benatar M, King OD, Kimonis VE, Ross ED, Weihl CC, Shorter J, Taylor JP. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature. 2013 Mar 28;495(7442):467-73. doi: 10.1038/nature11922. Epub 2013 Mar 3. PMID:23455423 doi:http://dx.doi.org/10.1038/nature11922
  2. Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, Kanagaraj AP, Carter R, Boylan KB, Wojtas AM, Rademakers R, Pinkus JL, Greenberg SA, Trojanowski JQ, Traynor BJ, Smith BN, Topp S, Gkazi AS, Miller J, Shaw CE, Kottlors M, Kirschner J, Pestronk A, Li YR, Ford AF, Gitler AD, Benatar M, King OD, Kimonis VE, Ross ED, Weihl CC, Shorter J, Taylor JP. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature. 2013 Mar 28;495(7442):467-73. doi: 10.1038/nature11922. Epub 2013 Mar 3. PMID:23455423 doi:http://dx.doi.org/10.1038/nature11922
  3. Kim CS, Seol SK, Song OK, Park JH, Jang SK. An RNA-binding protein, hnRNP A1, and a scaffold protein, septin 6, facilitate hepatitis C virus replication. J Virol. 2007 Apr;81(8):3852-65. Epub 2007 Jan 17. PMID:17229681 doi:http://dx.doi.org/10.1128/JVI.01311-06
  4. Myers JC, Moore SA, Shamoo Y. Structure-based incorporation of 6-methyl-8-(2-deoxy-beta-ribofuranosyl)isoxanthopteridine into the human telomeric repeat DNA as a probe for UP1 binding and destabilization of G-tetrad structures. J Biol Chem. 2003 Oct 24;278(43):42300-6. Epub 2003 Aug 6. PMID:12904298 doi:http://dx.doi.org/10.1074/jbc.M306147200

Contents


PDB ID 1pgz

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools