1u6g
From Proteopedia
Crystal Structure of The Cand1-Cul1-Roc1 Complex
Structural highlights
FunctionCUL1_HUMAN Core component of multiple cullin-RING-based SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complexes, which mediate the ubiquitination of proteins involved in cell cycle progression, signal transduction and transcription. In the SCF complex, serves as a rigid scaffold that organizes the SKP1-F-box protein and RBX1 subunits. May contribute to catalysis through positioning of the substrate and the ubiquitin-conjugating enzyme. The E3 ubiquitin-protein ligase activity of the complex is dependent on the neddylation of the cullin subunit and is inhibited by the association of the deneddylated cullin subunit with TIP120A/CAND1. The functional specificity of the SCF complex depends on the F-box protein as substrate recognition component. SCF(BTRC) and SCF(FBXW11) direct ubiquitination of CTNNB1 and participate in Wnt signaling. SCF(FBXW11) directs ubiquitination of phosphorylated NFKBIA. SCF(BTRC) directs ubiquitination of NFKBIB, NFKBIE, ATF4, SMAD3, SMAD4, CDC25A, FBXO5 and probably NFKB2. SCF(SKP2) directs ubiquitination of phosphorylated CDKN1B/p27kip and is involved in regulation of G1/S transition. SCF(SKP2) directs ubiquitination of ORC1, CDT1, RBL2, ELF4, CDKN1A, RAG2, FOXO1A, and probably MYC and TAL1. SCF(FBXW7) directs ubiquitination of cyclin E, NOTCH1 released notch intracellular domain (NICD), and probably PSEN1. SCF(FBXW2) directs ubiquitination of GCM1. SCF(FBXO32) directs ubiquitination of MYOD1. SCF(FBXO7) directs ubiquitination of BIRC2 and DLGAP5. SCF(FBXO33) directs ubiquitination of YBX1. SCF(FBXO11) does not seem to direct ubiquitination of TP53. SCF(BTRC) mediates the ubiquitination of NFKBIA at 'Lys-21' and 'Lys-22'; the degradation frees the associated NFKB1-RELA dimer to translocate into the nucleus and to activate transcription. SCF(Cyclin F) directs ubiquitination of CP110 (By similarity).[1] [2] [3] [4] [5] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe SCF ubiquitin ligase complex regulates diverse cellular functions by ubiquitinating numerous protein substrates. Cand1, a 120 kDa HEAT repeat protein, forms a tight complex with the Cul1-Roc1 SCF catalytic core, inhibiting the assembly of the multisubunit E3 complex. The crystal structure of the Cand1-Cul1-Roc1 complex shows that Cand1 adopts a highly sinuous superhelical structure, clamping around the elongated SCF scaffold protein Cul1. At one end, a Cand1 beta hairpin protrusion partially occupies the adaptor binding site on Cul1, inhibiting its interactions with the Skp1 adaptor and the substrate-recruiting F box protein subunits. At the other end, two Cand1 HEAT repeats pack against a conserved Cul1 surface cleft and bury a Cul1 lysine residue, whose modification by the ubiquitin-like protein, Nedd8, is able to block Cand1-Cul1 association. Together with biochemical evidence, these structural results elucidate the mechanisms by which Cand1 and Nedd8 regulate the assembly-disassembly cycles of SCF and other cullin-dependent E3 complexes. Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases.,Goldenberg SJ, Cascio TC, Shumway SD, Garbutt KC, Liu J, Xiong Y, Zheng N Cell. 2004 Nov 12;119(4):517-28. PMID:15537541[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Homo sapiens | Large Structures | Cascio TC | Garbutt KC | Goldenberg SJ | Liu J | Shumway SD | Xiong Y | Zheng N