1z8j
From Proteopedia
Crystal structure of the thrombin mutant G193P bound to PPACK
Structural highlights
DiseaseTHRB_HUMAN Defects in F2 are the cause of factor II deficiency (FA2D) [MIM:613679. It is a very rare blood coagulation disorder characterized by mucocutaneous bleeding symptoms. The severity of the bleeding manifestations correlates with blood factor II levels.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] Genetic variations in F2 may be a cause of susceptibility to ischemic stroke (ISCHSTR) [MIM:601367; also known as cerebrovascular accident or cerebral infarction. A stroke is an acute neurologic event leading to death of neural tissue of the brain and resulting in loss of motor, sensory and/or cognitive function. Ischemic strokes, resulting from vascular occlusion, is considered to be a highly complex disease consisting of a group of heterogeneous disorders with multiple genetic and environmental risk factors.[13] Defects in F2 are the cause of thrombophilia due to thrombin defect (THPH1) [MIM:188050. It is a multifactorial disorder of hemostasis characterized by abnormal platelet aggregation in response to various agents and recurrent thrombi formation. Note=A common genetic variation in the 3-prime untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increased risk of venous thrombosis. Defects in F2 are associated with susceptibility to pregnancy loss, recurrent, type 2 (RPRGL2) [MIM:614390. A common complication of pregnancy, resulting in spontaneous abortion before the fetus has reached viability. The term includes all miscarriages from the time of conception until 24 weeks of gestation. Recurrent pregnancy loss is defined as 3 or more consecutive spontaneous abortions.[14] FunctionTHRB_HUMAN Thrombin, which cleaves bonds after Arg and Lys, converts fibrinogen to fibrin and activates factors V, VII, VIII, XIII, and, in complex with thrombomodulin, protein C. Functions in blood homeostasis, inflammation and wound healing.[15] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe oxyanion hole of serine proteases is formed by the backbone N atoms of the catalytic Ser-195 and Gly-193 and engages the backbone O atom of the P1 residue of substrate in an important H-bonding interaction. The energetic contribution of this interaction in the ground and transition states is presently unknown. Measurements of the individual rate constants defining the catalytic mechanism of substrate hydrolysis for wild-type thrombin and trypsin and their G193A and G193P mutants reveal that Gly-193 is required for optimal substrate binding and acylation. Crystal structures of the G193A and G193P mutants of thrombin bound to the active site inhibitor H-d-Phe-Pro-Arg-CH2Cl document the extent of perturbation induced by the replacement of Gly-193. The Ala mutant weakens the H-bonding interaction of the N atom of residue 193, whereas the Pro substitution abrogates it altogether with additional small shifts of the protein backbone. From the kinetic and structural data, we estimate that the H-bonding interaction in the oxyanion hole contributes a stabilization of the ground and transition states of > 1.5 kcal/mol but < 3.0 kcal/mol. These results shed light on a basic aspect of the enzyme-substrate interaction in the entire family of trypsin-like serine proteases. Energetic and structural consequences of perturbing Gly-193 in the oxyanion hole of serine proteases.,Bobofchak KM, Pineda AO, Mathews FS, Di Cera E J Biol Chem. 2005 Jul 8;280(27):25644-50. Epub 2005 May 12. PMID:15890651[16] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations No citations found See AlsoReferences
|
|