2cdz

From Proteopedia

Jump to: navigation, search

CRYSTAL STRUCTURE OF THE HUMAN P21-ACTIVATED KINASE 4 IN COMPLEX WITH CGP74514A

Structural highlights

2cdz is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.3Å
Ligands:23D, CL, SEP, SO4
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PAK4_HUMAN Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell migration, growth, proliferation or cell survival. Activation by various effectors including growth factor receptors or active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues. Phosphorylates and inactivates the protein phosphatase SSH1, leading to increased inhibitory phosphorylation of the actin binding/depolymerizing factor cofilin. Decreased cofilin activity may lead to stabilization of actin filaments. Phosphorylates LIMK1, a kinase that also inhibits the activity of cofilin. Phosphorylates integrin beta5/ITGB5 and thus regulates cell motility. Phosphorylates ARHGEF2 and activates the downstream target RHOA that plays a role in the regulation of assembly of focal adhesions and actin stress fibers. Stimulates cell survival by phosphorylating the BCL2 antagonist of cell death BAD. Alternatively, inhibits apoptosis by preventing caspase-8 binding to death domain receptors in a kinase independent manner. Plays a role in cell-cycle progression by controlling levels of the cell-cycle regulatory protein CDKN1A and by phosphorylating RAN.[1] [2] [3] [4] [5] [6] [7]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

p21-activated kinases have been classified into two groups based on their domain architecture. Group II PAKs (PAK4-6) regulate a wide variety of cellular functions, and PAK deregulation has been linked to tumor development. Structural comparison of five high-resolution structures comprising all active, monophosphorylated group II catalytic domains revealed a surprising degree of domain plasticity, including a number of catalytically productive and nonproductive conformers. Rearrangements of helix alphaC, a key regulatory element of kinase function, resulted in an additional helical turn at the alphaC N terminus and a distortion of its C terminus, a movement hitherto unseen in protein kinases. The observed structural changes led to the formation of interactions between conserved residues that structurally link the glycine-rich loop, alphaC, and the activation segment and firmly anchor alphaC in an active conformation. Inhibitor screening identified six potent PAK inhibitors from which a tri-substituted purine inhibitor was cocrystallized with PAK4 and PAK5.

Crystal Structures of the p21-activated kinases PAK4, PAK5, and PAK6 reveal catalytic domain plasticity of active group II PAKs.,Eswaran J, Lee WH, Debreczeni JE, Filippakopoulos P, Turnbull A, Fedorov O, Deacon SW, Peterson JR, Knapp S Structure. 2007 Feb;15(2):201-13. PMID:17292838[8]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Gnesutta N, Qu J, Minden A. The serine/threonine kinase PAK4 prevents caspase activation and protects cells from apoptosis. J Biol Chem. 2001 Apr 27;276(17):14414-9. Epub 2001 Jan 24. PMID:11278822 doi:10.1074/jbc.M011046200
  2. Qu J, Cammarano MS, Shi Q, Ha KC, de Lanerolle P, Minden A. Activated PAK4 regulates cell adhesion and anchorage-independent growth. Mol Cell Biol. 2001 May;21(10):3523-33. PMID:11313478 doi:10.1128/MCB.21.10.3523-3533.2001
  3. Gnesutta N, Minden A. Death receptor-induced activation of initiator caspase 8 is antagonized by serine/threonine kinase PAK4. Mol Cell Biol. 2003 Nov;23(21):7838-48. PMID:14560027
  4. Soosairajah J, Maiti S, Wiggan O, Sarmiere P, Moussi N, Sarcevic B, Sampath R, Bamburg JR, Bernard O. Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. EMBO J. 2005 Feb 9;24(3):473-86. Epub 2005 Jan 20. PMID:15660133 doi:7600543
  5. Li Z, Zhang H, Lundin L, Thullberg M, Liu Y, Wang Y, Claesson-Welsh L, Stromblad S. p21-activated kinase 4 phosphorylation of integrin beta5 Ser-759 and Ser-762 regulates cell migration. J Biol Chem. 2010 Jul 30;285(31):23699-710. doi: 10.1074/jbc.M110.123497. Epub, 2010 May 27. PMID:20507994 doi:10.1074/jbc.M110.123497
  6. Bompard G, Rabeharivelo G, Frank M, Cau J, Delsert C, Morin N. Subgroup II PAK-mediated phosphorylation regulates Ran activity during mitosis. J Cell Biol. 2010 Sep 6;190(5):807-22. doi: 10.1083/jcb.200912056. Epub 2010 Aug , 30. PMID:20805321 doi:10.1083/jcb.200912056
  7. Wallace SW, Durgan J, Jin D, Hall A. Cdc42 regulates apical junction formation in human bronchial epithelial cells through PAK4 and Par6B. Mol Biol Cell. 2010 Sep 1;21(17):2996-3006. doi: 10.1091/mbc.E10-05-0429. Epub, 2010 Jul 14. PMID:20631255 doi:10.1091/mbc.E10-05-0429
  8. Eswaran J, Lee WH, Debreczeni JE, Filippakopoulos P, Turnbull A, Fedorov O, Deacon SW, Peterson JR, Knapp S. Crystal Structures of the p21-activated kinases PAK4, PAK5, and PAK6 reveal catalytic domain plasticity of active group II PAKs. Structure. 2007 Feb;15(2):201-13. PMID:17292838 doi:10.1016/j.str.2007.01.001

Contents


PDB ID 2cdz

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools