2hdp

From Proteopedia

Jump to: navigation, search

Solution Structure of Hdm2 RING Finger Domain

Structural highlights

2hdp is a 2 chain structure with sequence from Homo sapiens. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Ligands:ZN
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

MDM2_HUMAN Note=Seems to be amplified in certain tumors (including soft tissue sarcomas, osteosarcomas and gliomas). A higher frequency of splice variants lacking p53 binding domain sequences was found in late-stage and high-grade ovarian and bladder carcinomas. Four of the splice variants show loss of p53 binding.

Function

MDM2_HUMAN E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome. Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as an ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and promotes it to proteasomal degradation.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Regulation of the transcriptional response to the tumor suppressor p53 occurs at many levels, including control of its transcriptional activity, and of its stability and concentration within the cell. p53 stability is regulated by the protein Hdm2, an E3 ubiquitin ligase that binds to p53 and promotes its ubiquitination and degradation. The C-terminal domain of Hdm2, which is critical for this activity, has been classified as a RING domain on the basis of sequence homology, although it lacks the canonical set of zinc ligands (RING domains typically have C3HC4 or C4C4 zinc coordination). Here, we report the solution structure of the C2H2C4 RING domain of Hdm2(429-491), which reveals a symmetrical dimer with a unique cross-brace zinc-binding scheme. Each subunit has one Cys4 Zn site and one His2Cys2 Zn site. The global fold of each subunit is similar to those reported for other RING domains, with a compact betabetaalphabeta fold, a small hydrophobic core, and two Zn ions, which are essential for maintaining the domain structure. The dimer structure is maintained by an extensive interface that buries a large hydrophobic area on each subunit. It has been proposed that Hdm2 and its homologue HdmX form a stable heterodimer through their RING domains, resulting in a synergistic increase in observed E3 activity. To test this proposal, we prepared an HdmX RING construct and showed by NMR titration that it forms a tight 1:1 complex with the Hdm2 RING. The resonances most perturbed by heterodimer formation are located within the subunit interface of the homodimer, far removed from the surface expected to form the docking site of the E2 ubiquitin-conjugating enzyme, providing a structure-based rationale for the function of the RING domains in p53 ubiquitination.

Solution structure of the Hdm2 C2H2C4 RING, a domain critical for ubiquitination of p53.,Kostic M, Matt T, Martinez-Yamout MA, Dyson HJ, Wright PE J Mol Biol. 2006 Oct 20;363(2):433-50. Epub 2006 Aug 14. PMID:16965791[12]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
No citations found

See Also

References

  1. Girnita L, Girnita A, Larsson O. Mdm2-dependent ubiquitination and degradation of the insulin-like growth factor 1 receptor. Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8247-52. Epub 2003 Jun 23. PMID:12821780 doi:10.1073/pnas.1431613100
  2. Li M, Brooks CL, Kon N, Gu W. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol Cell. 2004 Mar 26;13(6):879-86. PMID:15053880
  3. Bernardi R, Scaglioni PP, Bergmann S, Horn HF, Vousden KH, Pandolfi PP. PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol. 2004 Jul;6(7):665-72. Epub 2004 Jun 13. PMID:15195100 doi:10.1038/ncb1147
  4. Sdek P, Ying H, Chang DL, Qiu W, Zheng H, Touitou R, Allday MJ, Xiao ZX. MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein. Mol Cell. 2005 Dec 9;20(5):699-708. PMID:16337594 doi:10.1016/j.molcel.2005.10.017
  5. Brady M, Vlatkovic N, Boyd MT. Regulation of p53 and MDM2 activity by MTBP. Mol Cell Biol. 2005 Jan;25(2):545-53. PMID:15632057 doi:25/2/545
  6. Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP, Saville MK. The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J. 2007 Feb 21;26(4):976-86. Epub 2007 Feb 8. PMID:17290220 doi:10.1038/sj.emboj.7601567
  7. Chen D, Zhang J, Li M, Rayburn ER, Wang H, Zhang R. RYBP stabilizes p53 by modulating MDM2. EMBO Rep. 2009 Feb;10(2):166-72. doi: 10.1038/embor.2008.231. Epub 2008 Dec 19. PMID:19098711 doi:10.1038/embor.2008.231
  8. Busso CS, Iwakuma T, Izumi T. Ubiquitination of mammalian AP endonuclease (APE1) regulated by the p53-MDM2 signaling pathway. Oncogene. 2009 Apr 2;28(13):1616-25. doi: 10.1038/onc.2009.5. Epub 2009 Feb 16. PMID:19219073 doi:10.1038/onc.2009.5
  9. Taira N, Yamamoto H, Yamaguchi T, Miki Y, Yoshida K. ATM augments nuclear stabilization of DYRK2 by inhibiting MDM2 in the apoptotic response to DNA damage. J Biol Chem. 2010 Feb 12;285(7):4909-19. doi: 10.1074/jbc.M109.042341. Epub 2009 , Dec 4. PMID:19965871 doi:10.1074/jbc.M109.042341
  10. Gilmore-Hebert M, Ramabhadran R, Stern DF. Interactions of ErbB4 and Kap1 connect the growth factor and DNA damage response pathways. Mol Cancer Res. 2010 Oct;8(10):1388-98. doi: 10.1158/1541-7786.MCR-10-0042. Epub , 2010 Sep 21. PMID:20858735 doi:10.1158/1541-7786.MCR-10-0042
  11. Fu X, Yucer N, Liu S, Li M, Yi P, Mu JJ, Yang T, Chu J, Jung SY, O'Malley BW, Gu W, Qin J, Wang Y. RFWD3-Mdm2 ubiquitin ligase complex positively regulates p53 stability in response to DNA damage. Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4579-84. doi:, 10.1073/pnas.0912094107. Epub 2010 Feb 19. PMID:20173098 doi:10.1073/pnas.0912094107
  12. Kostic M, Matt T, Martinez-Yamout MA, Dyson HJ, Wright PE. Solution structure of the Hdm2 C2H2C4 RING, a domain critical for ubiquitination of p53. J Mol Biol. 2006 Oct 20;363(2):433-50. Epub 2006 Aug 14. PMID:16965791 doi:10.1016/j.jmb.2006.08.027

Contents


PDB ID 2hdp

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools