2ibz
From Proteopedia
Yeast Cytochrome BC1 Complex with Stigmatellin
Structural highlights
Function[QCR6_YEAST] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. QCR6 may mediate formation of the complex between cytochromes c and c1. [CYB_YEAST] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. [QCR9_YEAST] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. QCR9 is required for formation of a fully functional complex. [QCR2_YEAST] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. QCR2 is required for the assembly of the complex. [QCR1_YEAST] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. COR1 may mediate formation of the complex between cytochromes c and c1. [CY1_YEAST] Heme-containing component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. [UCRI_YEAST] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedWe describe in detail the conformations of the inhibitor stigmatellin in its free form and bound to the ubiquinone-reducing (Q(B)) site of the reaction center and to the ubiquinol-oxidizing (Q(o)) site of the cytochrome bc(1) complex. We present here the first structures of a stereochemically correct stigmatellin in complexes with a bacterial reaction center and the yeast cytochrome bc1 complex. The conformations of the inhibitor bound to the two enzymes are not the same. We focus on the orientations of the stigmatellin side-chain relative to the chromone head group, and on the interaction of the stigmatellin side-chain with these membrane protein complexes. The different conformations of stigmatellin found illustrate the structural variability of the Q sites, which are affected by the same inhibitor. The free rotation about the chi1 dihedral angle is an essential factor for allowing stigmatellin to bind in both the reaction center and the cytochrome bc1 pocket. A comparison of stigmatellin conformations, free and bound to the photosynthetic reaction center and the cytochrome bc1 complex.,Lancaster CR, Hunte C, Kelley J 3rd, Trumpower BL, Ditchfield R J Mol Biol. 2007 Apr 20;368(1):197-208. Epub 2007 Feb 11. PMID:17337272[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See Also
References
|