2j98
From Proteopedia
Human coronavirus 229E non structural protein 9 cys69ala mutant (Nsp9)
Structural highlights
FunctionR1AB_CVH22 The replicase polyprotein of coronaviruses is a multifunctional protein: it contains the activities necessary for the transcription of negative stranded RNA, leader RNA, subgenomic mRNAs and progeny virion RNA as well as proteinases responsible for the cleavage of the polyprotein into functional products. The papain-like proteinase 1 (PLP1) and papain-like proteinase 2 (PLP2) are responsible for the cleavages located at the N-terminus of the replicase polyprotein. In addition, PLP2 possesses a deubiquitinating/deISGylating activity and processes both 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains from cellular substrates. PLP2 also antagonizes innate immune induction of type I interferon by blocking the nuclear translocation of host IRF-3 (By similarity). The main proteinase 3CL-PRO is responsible for the majority of cleavages as it cleaves the C-terminus of replicase polyprotein at 11 sites. Recognizes substrates containing the core sequence [ILMVF]-Q-|-[SGACN]. Inhibited by the substrate-analog Cbz-Val-Asn-Ser-Thr-Leu-Gln-CMK. Also contains an ADP-ribose-1-phosphate (ADRP)-binding function (By similarity). The helicase which contains a zinc finger structure displays RNA and DNA duplex-unwinding activities with 5' to 3' polarity. Its ATPase activity is strongly stimulated by poly(U), poly(dT), poly(C), poly(dA), but not by poly(G). The exoribonuclease acts on both ssRNA and dsRNA in a 3' to 5' direction (By similarity). Nsp7-nsp8 hexadecamer may possibly confer processivity to the polymerase, maybe by binding to dsRNA or by producing primers utilized by the latter (By similarity). Nsp9 is a ssRNA-binding protein (By similarity). NendoU is a Mn(2+)-dependent, uridylate-specific enzyme, which leaves 2'-3'-cyclic phosphates 5' to the cleaved bond (By similarity). Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedNon-structural protein 9 (Nsp9) of coronaviruses is believed to bind single-stranded RNA in the viral replication complex. The crystal structure of Nsp9 of human coronavirus (HCoV) 229E reveals a novel disulfide-linked homodimer, which is very different from the previously reported Nsp9 dimer of SARS coronavirus. In contrast, the structure of the Cys69Ala mutant of HCoV-229E Nsp9 shows the same dimer organization as the SARS-CoV protein. In the crystal, the wild-type HCoV-229E protein forms a trimer of dimers, whereas the mutant and SARS-CoV Nsp9 are organized in rod-like polymers. Chemical cross-linking suggests similar modes of aggregation in solution. In zone-interference gel electrophoresis assays and surface plasmon resonance experiments, the HCoV-229E wild-type protein is found to bind oligonucleotides with relatively high affinity, whereas binding by the Cys69Ala and Cys69Ser mutants is observed only for the longest oligonucleotides. The corresponding mutations in SARS-CoV Nsp9 do not hamper nucleic acid binding. From the crystal structures, a model for single-stranded RNA binding by Nsp9 is deduced. We propose that both forms of the Nsp9 dimer are biologically relevant; the occurrence of the disulfide-bonded form may be correlated with oxidative stress induced in the host cell by the viral infection. Variable oligomerization modes in coronavirus non-structural protein 9.,Ponnusamy R, Moll R, Weimar T, Mesters JR, Hilgenfeld R J Mol Biol. 2008 Nov 28;383(5):1081-96. Epub 2008 Jul 30. PMID:18694760[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|