2le8
From Proteopedia
The protein complex for DNA replication
Structural highlights
FunctionMCM6_HUMAN Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity.[1] Publication Abstract from PubMedInitiation of DNA replication in eukaryotes is exquisitely regulated to ensure that DNA replication occurs exactly once in each cell division. A conserved and essential step for the initiation of eukaryotic DNA replication is the loading of the mini-chromosome maintenance 2-7 (MCM2-7) helicase onto chromatin at replication origins by Cdt1. To elucidate the molecular mechanism of this event, we determined the structure of the human Cdt1-Mcm6 binding domains, the Cdt1(410-440)/MCM6(708-821) complex by NMR. Our structural and site-directed mutagenesis studies showed that charge complementarity is a key determinant for the specific interaction between Cdt1 and Mcm2-7. When this interaction was interrupted by alanine substitutions of the conserved interacting residues, the corresponding yeast Cdt1 and Mcm6 mutants were defective in DNA replication and the chromatin loading of Mcm2, resulting in cell death. Having shown that Cdt1 and Mcm6 interact through their C-termini, and knowing that Cdt1 is tethered to Orc6 during the loading of MCM2-7, our results suggest that the MCM2-7 hexamer is loaded with its C terminal end facing the ORC complex. These results provide a structural basis for the Cdt1-mediated MCM2-7 chromatin loading. Structural insights into the Cdt1-mediated MCM2-7 chromatin loading.,Liu C, Wu R, Zhou B, Wang J, Wei Z, Tye BK, Liang C, Zhu G Nucleic Acids Res. 2012 Apr;40(7):3208-17. doi: 10.1093/nar/gkr1118. Epub 2011, Dec 2. PMID:22140117[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
Categories: Homo sapiens | Large Structures | Liu C | Wei Z | Zhu G