3g65
From Proteopedia
Crystal Structure of the Human Rad9-Rad1-Hus1 DNA Damage Checkpoint Complex
Structural highlights
FunctionRAD9A_HUMAN Component of the 9-1-1 cell-cycle checkpoint response complex that plays a major role in DNA repair. The 9-1-1 complex is recruited to DNA lesion upon damage by the RAD17-replication factor C (RFC) clamp loader complex. Acts then as a sliding clamp platform on DNA for several proteins involved in long-patch base excision repair (LP-BER). The 9-1-1 complex stimulates DNA polymerase beta (POLB) activity by increasing its affinity for the 3'-OH end of the primer-template and stabilizes POLB to those sites where LP-BER proceeds; endonuclease FEN1 cleavage activity on substrates with double, nick, or gap flaps of distinct sequences and lengths; and DNA ligase I (LIG1) on long-patch base excision repair substrates. The 9-1-1 complex is necessary for the recruitment of RHNO1 to sites of double-stranded breaks (DSB) occurring during the S phase. RAD9A possesses 3'->5' double stranded DNA exonuclease activity. Its phosphorylation by PRKCD may be required for the formation of the 9-1-1 complex.[1] [2] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedRad9, Rad1, and Hus1 form a heterotrimeric complex (9-1-1) that is loaded onto DNA at sites of DNA damage. DNA-loaded 9-1-1 activates signaling through the Chk1 arm of the DNA damage checkpoint response via recruitment and stimulation of ATR. Additionally, 9-1-1 may play a direct role in facilitating DNA damage repair via interaction with a number of DNA repair enzymes. We have now determined the crystal structure of the human 9-1-1 complex, revealing a toroidal structure with a similar architecture to the homotrimeric PCNA DNA-binding clamp. The structure explains the formation of a unique heterotrimeric arrangement and reveals significant differences among the three subunits in the sites implicated in binding to the clamp loader and to ligand proteins. Biochemical analysis reveals a single repair enzyme-binding site on 9-1-1 that can be blocked competitively by the PCNA-binding cell-cycle regulator p21(cip1/waf1). Crystal structure of the rad9-rad1-hus1 DNA damage checkpoint complex--implications for clamp loading and regulation.,Dore AS, Kilkenny ML, Rzechorzek NJ, Pearl LH Mol Cell. 2009 Jun 26;34(6):735-45. Epub 2009 May 14. PMID:19446481[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|