3i9v
From Proteopedia
Crystal structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus, oxidized, 2 mol/ASU
Structural highlights
FunctionNQO1_THET8 NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient required for the synthesis of ATP. The nqo1 subunit contains the NADH-binding site and the primary electron acceptor FMN. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedComplex I plays a central role in cellular energy production, coupling electron transfer between NADH and quinone to proton translocation. The mechanism of this highly efficient enzyme is currently unknown. Mitochondrial complex I is a major source of reactive oxygen species, which may be one of the causes of aging. Dysfunction of complex I is implicated in many human neurodegenerative diseases. We have determined several x-ray structures of the oxidized and reduced hydrophilic domain of complex I from Thermus thermophilus at up to 3.1 A resolution. The structures reveal the mode of interaction of complex I with NADH, explaining known kinetic data and providing implications for the mechanism of reactive oxygen species production at the flavin site of complex I. Bound metals were identified in the channel at the interface with the frataxin-like subunit Nqo15, indicating possible iron-binding sites. Conformational changes upon reduction of the complex involve adjustments in the nucleotide-binding pocket, as well as small but significant shifts of several alpha-helices at the interface with the membrane domain. These shifts are likely to be driven by the reduction of nearby iron-sulfur clusters N2 and N6a/b. Cluster N2 is the electron donor to quinone and is coordinated by unique motif involving two consecutive (tandem) cysteines. An unprecedented "on/off switch" (disconnection) of coordinating bonds between the tandem cysteines and this cluster was observed upon reduction. Comparison of the structures suggests a novel mechanism of coupling between electron transfer and proton translocation, combining conformational changes and protonation/deprotonation of tandem cysteines. Structural basis for the mechanism of respiratory complex I.,Berrisford JM, Sazanov LA J Biol Chem. 2009 Oct 23;284(43):29773-83. Epub 2009 Jul 27. PMID:19635800[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|