3w2t
From Proteopedia
Crystal structure of human depiptidyl peptidase IV (DPP-4) in complex with vildagliptin
Structural highlights
FunctionDPP4_HUMAN Cell surface glycoprotein receptor involved in the costimulatory signal essential for T-cell receptor (TCR)-mediated T-cell activation. Acts as a positive regulator of T-cell coactivation, by binding at least ADA, CAV1, IGF2R, and PTPRC. Its binding to CAV1 and CARD11 induces T-cell proliferation and NF-kappa-B activation in a T-cell receptor/CD3-dependent manner. Its interaction with ADA also regulates lymphocyte-epithelial cell adhesion. In association with FAP is involved in the pericellular proteolysis of the extracellular matrix (ECM), the migration and invasion of endothelial cells into the ECM. May be involved in the promotion of lymphatic endothelial cells adhesion, migration and tube formation. When overexpressed, enhanced cell proliferation, a process inhibited by GPC3. Acts also as a serine exopeptidase with a dipeptidyl peptidase activity that regulates various physiological processes by cleaving peptides in the circulation, including many chemokines, mitogenic growth factors, neuropeptides and peptide hormones. Removes N-terminal dipeptides sequentially from polypeptides having unsubstituted N-termini provided that the penultimate residue is proline.[1] [2] [3] [4] [5] [6] [7] [8] [9] Publication Abstract from PubMedIn recent years, various dipeptidyl peptidase IV (DPP-4) inhibitors have been released as therapeutic drugs for type 2 diabetes in many countries. In spite of their diverse chemical structures, no comparative studies of their binding modes in the active site of DPP-4 have been disclosed. We determined the co-crystal structure of vildagliptin with DPP-4 by X-ray crystallography and compared the binding modes of six launched inhibitors in DPP-4. The inhibitors were categorized into three classes on the basis of their binding subsites: (i) vildagliptin and saxagliptin (Class 1) form interactions with the core S1 and S2 subsites and a covalent bond with Ser630 in the catalytic triad; (ii) alogliptin and linagliptin (Class 2) form interactions with the S1' and/or S2' subsites in addition to the S1 and S2 subsites; and (iii) sitagliptin and teneligliptin (Class 3) form interactions with the S1, S2 and S2 extensive subsites. The present study revealed that the additional interactions with the S1', S2' or S2 extensive subsite may increase DPP-4 inhibition beyond the level afforded by the fundamental interactions with the S1 and S2 subsites and are more effective than forming a covalent bond with Ser630. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site.,Nabeno M, Akahoshi F, Kishida H, Miyaguchi I, Tanaka Y, Ishii S, Kadowaki T Biochem Biophys Res Commun. 2013 May 3;434(2):191-6. doi:, 10.1016/j.bbrc.2013.03.010. Epub 2013 Mar 15. PMID:23501107[10] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Homo sapiens | Large Structures | Akahoshi F | Katou R | Kishida H | Miyaguchi I | Nabeno M | Tanaka Y