4gia

From Proteopedia

Jump to: navigation, search

Crystal structure of the MUTB F164L mutant from crystals soaked with isomaltulose

Structural highlights

4gia is a 2 chain structure with sequence from Rhizobium sp. MX-45. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.01Å
Ligands:CA, GOL, TRS
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

M1E1F3_9HYPH

Publication Abstract from PubMed

Sucrose isomerase is an enzyme that catalyzes the production of sucrose isomers of high biotechnological and pharmaceutical interest. Owing to the complexity of the chemical synthesis of these isomers, isomaltulose and trehalulose, enzymatic conversion remains the preferred method for obtaining these products. Depending on the microbial source, the ratio of the sucrose-isomer products varies significantly. In studies aimed at understanding and explaining the underlying molecular mechanisms of these reactions, mutations obtained using a random-mutagenesis approach displayed a major hydrolytic activity. Two of these variants, R284C and F164L, of sucrose isomerase from Rhizobium sp. were therefore crystallized and their crystal structures were determined. The three-dimensional structures of these mutants allowed the identification of the molecular determinants that favour hydrolytic activity compared with transferase activity. Substantial conformational changes resulting in an active-site opening were observed, as were changes in the pattern of water molecules bordering the active-site region.

Mutations inducing an active-site aperture in Rhizobium sp. sucrose isomerase confer hydrolytic activity.,Lipski A, Watzlawick H, Ravaud S, Robert X, Rhimi M, Haser R, Mattes R, Aghajari N Acta Crystallogr D Biol Crystallogr. 2013 Feb;69(Pt 2):298-307. doi:, 10.1107/S0907444912045532. Epub 2013 Jan 19. PMID:23385465[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
No citations found

See Also

References

  1. Lipski A, Watzlawick H, Ravaud S, Robert X, Rhimi M, Haser R, Mattes R, Aghajari N. Mutations inducing an active-site aperture in Rhizobium sp. sucrose isomerase confer hydrolytic activity. Acta Crystallogr D Biol Crystallogr. 2013 Feb;69(Pt 2):298-307. doi:, 10.1107/S0907444912045532. Epub 2013 Jan 19. PMID:23385465 doi:10.1107/S0907444912045532

Contents


PDB ID 4gia

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools