| Structural highlights
Disease
KCNH2_HUMAN Defects in KCNH2 are the cause of long QT syndrome type 2 (LQT2) [MIM:613688. Long QT syndromes are heart disorders characterized by a prolonged QT interval on the ECG and polymorphic ventricular arrhythmias. They cause syncope and sudden death in response to exercise or emotional stress. Deafness is often associated with LQT2.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] Defects in KCNH2 are the cause of short QT syndrome type 1 (SQT1) [MIM:609620. Short QT syndromes are heart disorders characterized by idiopathic persistently and uniformly short QT interval on ECG in the absence of structural heart disease in affected individuals. They cause syncope and sudden death.[25] [26]
Function
KCNH2_HUMAN Pore-forming (alpha) subunit of voltage-gated inwardly rectifying potassium channel. Channel properties are modulated by cAMP and subunit assembly. Mediates the rapidly activating component of the delayed rectifying potassium current in heart (IKr). Isoform 3 has no channel activity by itself, but modulates channel characteristics when associated with isoform 1.
Publication Abstract from PubMed
KCNH channels form an important family of voltage gated potassium channels. These channels include a N-terminal Per-Arnt-Sim (PAS) domain with unknown function. In other proteins PAS domains are implicated in cellular responses to environmental queues through small molecule binding or involvement in signaling cascades. To better understand their role we characterized the structural properties of several channel PAS domains. We determined high resolution structures of PAS domains from the mouse EAG (mEAG), drosophila ELK (dELK) and human ERG (hERG) channels and also of the hERG domain without the first nine amino acids. We analyzed these structures for features connected to ligand binding and signaling in other PAS domains. In particular, we have found cavities in the hERG and mEAG structures that share similarities with the ligand binding sites from other PAS domains. These cavities are lined by polar and apolar chemical groups and display potential flexibility in their volume. We have also found that the hydrophobic patch on the domain beta-sheet is a conserved feature and appears to drive the formation of protein-protein contacts. In addition, the structures of the dELK domain and of the truncated hERG domain revealed the presence of N-terminal helices. These helices are equivalent to the helix described in the hERG NMR structures and are known to be important for channel function. Overall, these channel domains retain many of the PAS domain characteristics known to be important for cell signaling.
Structural properties of PAS domains from the KCNH potassium channels.,Adaixo R, Harley CA, Castro-Rodrigues AF, Morais-Cabral JH PLoS One. 2013;8(3):e59265. doi: 10.1371/journal.pone.0059265. Epub 2013 Mar 15. PMID:23555008[27]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Gong Q, Jones MA, Zhou Z. Mechanisms of pharmacological rescue of trafficking-defective hERG mutant channels in human long QT syndrome. J Biol Chem. 2006 Feb 17;281(7):4069-74. Epub 2005 Dec 16. PMID:16361248 doi:10.1074/jbc.M511765200
- ↑ Itoh T, Tanaka T, Nagai R, Kamiya T, Sawayama T, Nakayama T, Tomoike H, Sakurada H, Yazaki Y, Nakamura Y. Genomic organization and mutational analysis of HERG, a gene responsible for familial long QT syndrome. Hum Genet. 1998 Apr;102(4):435-9. PMID:9600240
- ↑ Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 1995 Mar 10;80(5):795-803. PMID:7889573
- ↑ Satler CA, Walsh EP, Vesely MR, Plummer MH, Ginsburg GS, Jacob HJ. Novel missense mutation in the cyclic nucleotide-binding domain of HERG causes long QT syndrome. Am J Med Genet. 1996 Oct 2;65(1):27-35. PMID:8914737 doi:<27::AID-AJMG4>3.0.CO;2-V 10.1002/(SICI)1096-8628(19961002)65:1<27::AID-AJMG4>3.0.CO;2-V
- ↑ Benson DW, MacRae CA, Vesely MR, Walsh EP, Seidman JG, Seidman CE, Satler CA. Missense mutation in the pore region of HERG causes familial long QT syndrome. Circulation. 1996 May 15;93(10):1791-5. PMID:8635257
- ↑ Dausse E, Berthet M, Denjoy I, Andre-Fouet X, Cruaud C, Bennaceur M, Faure S, Coumel P, Schwartz K, Guicheney P. A mutation in HERG associated with notched T waves in long QT syndrome. J Mol Cell Cardiol. 1996 Aug;28(8):1609-15. PMID:8877771 doi:10.1006/jmcc.1996.0151
- ↑ Tanaka T, Nagai R, Tomoike H, Takata S, Yano K, Yabuta K, Haneda N, Nakano O, Shibata A, Sawayama T, Kasai H, Yazaki Y, Nakamura Y. Four novel KVLQT1 and four novel HERG mutations in familial long-QT syndrome. Circulation. 1997 Feb 4;95(3):565-7. PMID:9024139
- ↑ Splawski I, Shen J, Timothy KW, Vincent GM, Lehmann MH, Keating MT. Genomic structure of three long QT syndrome genes: KVLQT1, HERG, and KCNE1. Genomics. 1998 Jul 1;51(1):86-97. PMID:9693036 doi:S0888-7543(98)95361-7
- ↑ Satler CA, Vesely MR, Duggal P, Ginsburg GS, Beggs AH. Multiple different missense mutations in the pore region of HERG in patients with long QT syndrome. Hum Genet. 1998 Mar;102(3):265-72. PMID:9544837
- ↑ Akimoto K, Furutani M, Imamura S, Furutani Y, Kasanuki H, Takao A, Momma K, Matsuoka R. Novel missense mutation (G601S) of HERG in a Japanese long QT syndrome family. Hum Mutat. 1998;Suppl 1:S184-6. PMID:9452080
- ↑ Berthet M, Denjoy I, Donger C, Demay L, Hammoude H, Klug D, Schulze-Bahr E, Richard P, Funke H, Schwartz K, Coumel P, Hainque B, Guicheney P. C-terminal HERG mutations: the role of hypokalemia and a KCNQ1-associated mutation in cardiac event occurrence. Circulation. 1999 Mar 23;99(11):1464-70. PMID:10086971
- ↑ Jongbloed RJ, Wilde AA, Geelen JL, Doevendans P, Schaap C, Van Langen I, van Tintelen JP, Cobben JM, Beaufort-Krol GC, Geraedts JP, Smeets HJ. Novel KCNQ1 and HERG missense mutations in Dutch long-QT families. Hum Mutat. 1999;13(4):301-10. PMID:10220144 doi:<301::AID-HUMU7>3.0.CO;2-V 10.1002/(SICI)1098-1004(1999)13:4<301::AID-HUMU7>3.0.CO;2-V
- ↑ Chen J, Zou A, Splawski I, Keating MT, Sanguinetti MC. Long QT syndrome-associated mutations in the Per-Arnt-Sim (PAS) domain of HERG potassium channels accelerate channel deactivation. J Biol Chem. 1999 Apr 9;274(15):10113-8. PMID:10187793
- ↑ Yoshida H, Horie M, Otani H, Takano M, Tsuji K, Kubota T, Fukunami M, Sasayama S. Characterization of a novel missense mutation in the pore of HERG in a patient with long QT syndrome. J Cardiovasc Electrophysiol. 1999 Sep;10(9):1262-70. PMID:10517660
- ↑ Larsen LA, Svendsen IH, Jensen AM, Kanters JK, Andersen PS, Moller M, Sorensen SA, Sandoe E, Jacobsen JR, Vuust J, Christiansen M. Long QT syndrome with a high mortality rate caused by a novel G572R missense mutation in KCNH2. Clin Genet. 2000 Feb;57(2):125-30. PMID:10735633
- ↑ Splawski I, Shen J, Timothy KW, Lehmann MH, Priori S, Robinson JL, Moss AJ, Schwartz PJ, Towbin JA, Vincent GM, Keating MT. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation. 2000 Sep 5;102(10):1178-85. PMID:10973849
- ↑ Laitinen P, Fodstad H, Piippo K, Swan H, Toivonen L, Viitasalo M, Kaprio J, Kontula K. Survey of the coding region of the HERG gene in long QT syndrome reveals six novel mutations and an amino acid polymorphism with possible phenotypic effects. Hum Mutat. 2000 Jun;15(6):580-1. PMID:10862094 doi:<580::AID-HUMU16>3.0.CO;2-0 10.1002/1098-1004(200006)15:6<580::AID-HUMU16>3.0.CO;2-0
- ↑ Kagan A, Yu Z, Fishman GI, McDonald TV. The dominant negative LQT2 mutation A561V reduces wild-type HERG expression. J Biol Chem. 2000 Apr 14;275(15):11241-8. PMID:10753933
- ↑ Hayashi K, Shimizu M, Ino H, Yamaguchi M, Mabuchi H, Hoshi N, Higashida H. Characterization of a novel missense mutation E637K in the pore-S6 loop of HERG in a patient with long QT syndrome. Cardiovasc Res. 2002 Apr;54(1):67-76. PMID:12062363
- ↑ Paulussen A, Raes A, Matthijs G, Snyders DJ, Cohen N, Aerssens J. A novel mutation (T65P) in the PAS domain of the human potassium channel HERG results in the long QT syndrome by trafficking deficiency. J Biol Chem. 2002 Dec 13;277(50):48610-6. Epub 2002 Sep 26. PMID:12354768 doi:10.1074/jbc.M206569200
- ↑ Johnson WH Jr, Yang P, Yang T, Lau YR, Mostella BA, Wolff DJ, Roden DM, Benson DW. Clinical, genetic, and biophysical characterization of a homozygous HERG mutation causing severe neonatal long QT syndrome. Pediatr Res. 2003 May;53(5):744-8. Epub 2003 Mar 5. PMID:12621127 doi:10.1203/01.PDR.0000059750.17002.B6
- ↑ Westenskow P, Splawski I, Timothy KW, Keating MT, Sanguinetti MC. Compound mutations: a common cause of severe long-QT syndrome. Circulation. 2004 Apr 20;109(15):1834-41. Epub 2004 Mar 29. PMID:15051636 doi:10.1161/01.CIR.0000125524.34234.13
- ↑ Tester DJ, Will ML, Haglund CM, Ackerman MJ. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm. 2005 May;2(5):507-17. PMID:15840476 doi:10.1016/j.hrthm.2005.01.020
- ↑ Aidery P, Kisselbach J, Gaspar H, Baldea I, Schweizer PA, Becker R, Katus HA, Thomas D. Identification and functional characterization of the novel human ether-a-go-go-related gene (hERG) R744P mutant associated with hereditary long QT syndrome 2. Biochem Biophys Res Commun. 2012 Feb 24;418(4):830-5. doi:, 10.1016/j.bbrc.2012.01.118. Epub 2012 Jan 30. PMID:22314138 doi:10.1016/j.bbrc.2012.01.118
- ↑ Brugada R, Hong K, Dumaine R, Cordeiro J, Gaita F, Borggrefe M, Menendez TM, Brugada J, Pollevick GD, Wolpert C, Burashnikov E, Matsuo K, Wu YS, Guerchicoff A, Bianchi F, Giustetto C, Schimpf R, Brugada P, Antzelevitch C. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation. 2004 Jan 6;109(1):30-5. Epub 2003 Dec 15. PMID:14676148 doi:10.1161/01.CIR.0000109482.92774.3A
- ↑ Hong K, Bjerregaard P, Gussak I, Brugada R. Short QT syndrome and atrial fibrillation caused by mutation in KCNH2. J Cardiovasc Electrophysiol. 2005 Apr;16(4):394-6. PMID:15828882 doi:JCE40621
- ↑ Adaixo R, Harley CA, Castro-Rodrigues AF, Morais-Cabral JH. Structural properties of PAS domains from the KCNH potassium channels. PLoS One. 2013;8(3):e59265. doi: 10.1371/journal.pone.0059265. Epub 2013 Mar 15. PMID:23555008 doi:10.1371/journal.pone.0059265
|