4kum

From Proteopedia

Jump to: navigation, search

Structure of LSD1-CoREST-Tetrahydrofolate complex

Structural highlights

4kum is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.05Å
Ligands:CL, FAD, GOL, THG
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

KDM1A_HUMAN Histone demethylase that demethylates both 'Lys-4' (H3K4me) and 'Lys-9' (H3K9me) of histone H3, thereby acting as a coactivator or a corepressor, depending on the context. Acts by oxidizing the substrate by FAD to generate the corresponding imine that is subsequently hydrolyzed. Acts as a corepressor by mediating demethylation of H3K4me, a specific tag for epigenetic transcriptional activation. Demethylates both mono- (H3K4me1) and di-methylated (H3K4me2) H3K4me. May play a role in the repression of neuronal genes. Alone, it is unable to demethylate H3K4me on nucleosomes and requires the presence of RCOR1/CoREST to achieve such activity. Also acts as a coactivator of androgen receptor (ANDR)-dependent transcription, by being recruited to ANDR target genes and mediating demethylation of H3K9me, a specific tag for epigenetic transcriptional repression. The presence of PRKCB in ANDR-containing complexes, which mediates phosphorylation of 'Thr-6' of histone H3 (H3T6ph), a specific tag that prevents demethylation H3K4me, prevents H3K4me demethylase activity of KDM1A. Demethylates di-methylated 'Lys-370' of p53/TP53 which prevents interaction of p53/TP53 with TP53BP1 and represses p53/TP53-mediated transcriptional activation. Demethylates and stabilizes the DNA methylase DNMT1. Required for gastrulation during embryogenesis. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development.[1] [2] [3] [4] [5]

Publication Abstract from PubMed

An important epigenetic modification is the methylation/demethylation of histone lysine residues. The first histone demethylase to be discovered was a lysine-specific demethylase 1, LSD1, a flavin containing enzyme which carries out the demethylation of di- and monomethyllysine 4 in histone H3. The removed methyl groups are oxidized to formaldehyde. This reaction is similar to those performed by dimethylglycine dehydrogenase and sarcosine dehydrogenase, in which protein-bound tetrahydrofolate (THF) was proposed to serve as an acceptor of the generated formaldehyde. We showed earlier that LSD1 binds THF with high affinity which suggests its possible participation in the histone demethylation reaction. In the cell, LSD1 interacts with co-repressor for repressor element 1 silencing transcription factor (CoREST). In order to elucidate the role of folate in the demethylating reaction we solved the crystal structure of the LSD1-CoREST-THF complex. In the complex, the folate-binding site is located in the active center in close proximity to flavin adenine dinucleotide. This position of the folate suggests that the bound THF accepts the formaldehyde generated in the course of histone demethylation to form 5,10-methylene-THF. We also show the formation of 5,10-methylene-THF during the course of the enzymatic reaction in the presence of THF by mass spectrometry. Production of this form of folate could act to prevent accumulation of potentially toxic formaldehyde in the cell. These studies suggest that folate may play a role in the epigenetic control of gene expression in addition to its traditional role in the transfer of one-carbon units in metabolism.

Crystal structure of the histone lysine specific demethylase LSD1 complexed with tetrahydrofolate.,Luka Z, Pakhomova S, Loukachevitch LV, Calcutt MW, Newcomer ME, Wagner C Protein Sci. 2014 Apr 8. doi: 10.1002/pro.2469. PMID:24715612[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Hakimi MA, Bochar DA, Chenoweth J, Lane WS, Mandel G, Shiekhattar R. A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes. Proc Natl Acad Sci U S A. 2002 May 28;99(11):7420-5. PMID:12032298 doi:10.1073/pnas.112008599
  2. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004 Dec 29;119(7):941-53. PMID:15620353 doi:http://dx.doi.org/10.1016/j.cell.2004.12.012
  3. Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH, Gunther T, Buettner R, Schule R. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature. 2005 Sep 15;437(7057):436-9. Epub 2005 Aug 3. PMID:16079795 doi:http://dx.doi.org/10.1038/nature04020
  4. Huang J, Sengupta R, Espejo AB, Lee MG, Dorsey JA, Richter M, Opravil S, Shiekhattar R, Bedford MT, Jenuwein T, Berger SL. p53 is regulated by the lysine demethylase LSD1. Nature. 2007 Sep 6;449(7158):105-8. PMID:17805299 doi:nature06092
  5. Metzger E, Imhof A, Patel D, Kahl P, Hoffmeyer K, Friedrichs N, Muller JM, Greschik H, Kirfel J, Ji S, Kunowska N, Beisenherz-Huss C, Gunther T, Buettner R, Schule R. Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4. Nature. 2010 Apr 1;464(7289):792-6. doi: 10.1038/nature08839. Epub 2010 Mar 14. PMID:20228790 doi:http://dx.doi.org/10.1038/nature08839
  6. Luka Z, Pakhomova S, Loukachevitch LV, Calcutt MW, Newcomer ME, Wagner C. Crystal structure of the histone lysine specific demethylase LSD1 complexed with tetrahydrofolate. Protein Sci. 2014 Apr 8. doi: 10.1002/pro.2469. PMID:24715612 doi:http://dx.doi.org/10.1002/pro.2469

Contents


PDB ID 4kum

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools