4nqq

From Proteopedia

Jump to: navigation, search

Crystal structure of mouse P-cadherin extracellular domains EC1-EC2

Structural highlights

4nqq is a 4 chain structure with sequence from Mus musculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.2Å
Ligands:CA, CU
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CADH3_MOUSE Cadherins are calcium-dependent cell adhesion proteins. They preferentially interact with themselves in a homophilic manner in connecting cells; cadherins may thus contribute to the sorting of heterogeneous cell types.

Publication Abstract from PubMed

Type I cadherin cell-adhesion proteins are similar in sequence and structure and yet are different enough to mediate highly specific cell-cell recognition phenomena. It has previously been shown that small differences in the homophilic and heterophilic binding affinities of different type I family members can account for the differential cell-sorting behavior. Here we use a combination of X-ray crystallography, analytical ultracentrifugation, surface plasmon resonance and double electron-electron resonance (DEER) electron paramagnetic resonance spectroscopy to identify the molecular determinants of type I cadherin dimerization affinities. Small changes in sequence are found to produce subtle structural and dynamical changes that impact relative affinities, in part via electrostatic and hydrophobic interactions, and in part through entropic effects because of increased conformational heterogeneity in the bound states as revealed by DEER distance mapping in the dimers. These findings highlight the remarkable ability of evolution to exploit a wide range of molecular properties to produce closely related members of the same protein family that have affinity differences finely tuned to mediate their biological roles.

Structural and energetic determinants of adhesive binding specificity in type I cadherins.,Vendome J, Felsovalyi K, Song H, Yang Z, Jin X, Brasch J, Harrison OJ, Ahlsen G, Bahna F, Kaczynska A, Katsamba PS, Edmond D, Hubbell WL, Shapiro L, Honig B Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):E4175-84. doi:, 10.1073/pnas.1416737111. Epub 2014 Sep 24. PMID:25253890[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
No citations found

See Also

References

  1. Vendome J, Felsovalyi K, Song H, Yang Z, Jin X, Brasch J, Harrison OJ, Ahlsen G, Bahna F, Kaczynska A, Katsamba PS, Edmond D, Hubbell WL, Shapiro L, Honig B. Structural and energetic determinants of adhesive binding specificity in type I cadherins. Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):E4175-84. doi:, 10.1073/pnas.1416737111. Epub 2014 Sep 24. PMID:25253890 doi:http://dx.doi.org/10.1073/pnas.1416737111

Contents


PDB ID 4nqq

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools