4uxr
From Proteopedia
Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins
Structural highlights
DiseaseKIF1A_HUMAN Autosomal dominant nonsyndromic intellectual disability;Hereditary sensory and autonomic neuropathy type 2;Autosomal recessive spastic paraplegia type 30. The disease is caused by mutations affecting the gene represented in this entry.[1] The disease is caused by mutations affecting the gene represented in this entry.[2] The disease is caused by mutations affecting the gene represented in this entry.[3] FunctionKIF1A_HUMAN Motor for anterograde axonal transport of synaptic vesicle precursors (By similarity). Publication Abstract from PubMedKinesins are a superfamily of microtubule-based ATP-powered motors, important for multiple, essential cellular functions. How microtubule binding stimulates their ATPase and controls force generation is not understood. To address this fundamental question, we visualized microtubule-bound kinesin-1 and kinesin-3 motor domains at multiple steps in their ATPase cycles - including their nucleotide-free states - at ~7A resolution using cryo-electron microscopy. In both motors, microtubule binding promotes ordered conformations of conserved loops that stimulate ADP release, enhance microtubule affinity and prime the catalytic site for ATP binding. ATP binding causes only small shifts of these nucleotide-coordinating loops but induces large conformational changes elsewhere that allow force generation and neck linker docking towards the microtubule plus end. Family-specific differences across the kinesin-microtubule interface account for the distinctive properties of each motor. Our data thus provide evidence for a conserved ATP-driven mechanism for kinesins and reveal the critical mechanistic contribution of the microtubule interface. Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins.,Atherton J, Farabella I, Yu IM, Rosenfeld SS, Houdusse A, Topf M, Moores CA Elife. 2014 Sep 10:e03680. doi: 10.7554/eLife.03680. PMID:25209998[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Bos taurus | Homo sapiens | Large Structures | Atherton J | Farabella I | Houdusse A | Moores C | Rosenfeld SS | Topf M | Yu IM