5cmg

From Proteopedia

Jump to: navigation, search

GTA mutant with mercury- E303C

Structural highlights

5cmg is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.83Å
Ligands:HG
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

BGAT_HUMAN This protein is the basis of the ABO blood group system. The histo-blood group ABO involves three carbohydrate antigens: A, B, and H. A, B, and AB individuals express a glycosyltransferase activity that converts the H antigen to the A antigen (by addition of UDP-GalNAc) or to the B antigen (by addition of UDP-Gal), whereas O individuals lack such activity.

Publication Abstract from PubMed

The homologous glycosyltransferases alpha-1,3-N-acetylgalactosaminyltransferase (GTA) and alpha-1,3-galactosyltransferase (GTB) carry out the final synthetic step of the closely related human ABO(H) blood group A and B antigens. The catalytic mechanism of these model retaining enzymes remains under debate, where Glu303 has been suggested to act as a putative nucleophile in a double displacement mechanism, a local dipole stabilizing the intermediate in an orthogonal associative mechanism or a general base to stabilize the reactive oxocarbenium ion-like intermediate in an S N i-like mechanism. Kinetic analysis of GTA and GTB point mutants E303C, E303D, E303Q and E303A shows that despite the enzymes having nearly identical sequences, the corresponding mutants of GTA/GTB have up to a 13-fold difference in their residual activities relative to wild type. High-resolution single crystal X-ray diffraction studies reveal, surprisingly, that the mutated Cys, Asp and Gln functional groups are no more than 0.8 A further from the anomeric carbon of donor substrate compared to wild type. However, complicating the analysis is the observation that Glu303 itself plays a critical role in maintaining the stability of a strained "double-turn" in the active site through several hydrogen bonds, and any mutation other than E303Q leads to significantly higher thermal motion or even disorder in the substrate recognition pockets. Thus, there is a remarkable juxtaposition of the mutants E303C and E303D, which retain significant activity despite disrupted active site architecture, with GTB/E303Q, which maintains active site architecture but exhibits zero activity. These findings indicate that nucleophilicity at position 303 is more catalytically valuable than active site stability and highlight the mechanistic elasticity of these enzymes.

Glycosyltransfer in mutants of putative catalytic residue Glu303 of the human ABO(H) A and B blood group glycosyltransferases GTA and GTB proceeds through a labile active site.,Blackler RJ, Gagnon SM, Polakowski R, Rose NL, Zheng RB, Letts JA, Johal AR, Schuman B, Borisova SN, Palcic MM, Evans SV Glycobiology. 2016 Nov 22. PMID:27979997[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
No citations found

See Also

References

  1. Blackler RJ, Gagnon SM, Polakowski R, Rose NL, Zheng RB, Letts JA, Johal AR, Schuman B, Borisova SN, Palcic MM, Evans SV. Glycosyltransfer in mutants of putative catalytic residue Glu303 of the human ABO(H) A and B blood group glycosyltransferases GTA and GTB proceeds through a labile active site. Glycobiology. 2016 Nov 22. PMID:27979997 doi:http://dx.doi.org/10.1093/glycob/cww117

Contents


PDB ID 5cmg

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools