5k6i
From Proteopedia
Crystal structure of prefusion-stabilized RSV F single-chain 9-10 DS-Cav1 A149C-Y458C, S46G-E92D-S215P-K465Q variant.
Structural highlights
FunctionFUS_HRSVA Class I viral fusion protein. Under the current model, the protein has at least 3 conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and plasma cell membrane fusion, the heptad repeat (HR) regions assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and plasma cell membranes. Directs fusion of viral and cellular membranes leading to delivery of the nucleocapsid into the cytoplasm. This fusion is pH independent and occurs directly at the outer cell membrane. The trimer of F1-F2 (protein F) interacts with glycoprotein G at the virion surface. Upon binding of G to heparan sulfate, the hydrophobic fusion peptide is unmasked and interacts with the cellular membrane, inducing the fusion between host cell and virion membranes. Notably, RSV fusion protein is able to interact directly with heparan sulfate and therefore actively participates in virus attachment. Furthermore, the F2 subunit was identifed as the major determinant of RSV host cell specificity. Later in infection, proteins F expressed at the plasma membrane of infected cells mediate fusion with adjacent cells to form syncytia, a cytopathic effect that could lead to tissue necrosis. The fusion protein is also able to trigger p53-dependent apoptosis.[1] [2] Publication Abstract from PubMedStructure-based design of vaccines, particularly the iterative optimization used so successfully in the structure-based design of drugs, has been a long-sought goal. We previously developed a first-generation vaccine antigen called DS-Cav1, comprising a prefusion-stabilized form of the fusion (F) glycoprotein, which elicits high-titer protective responses against respiratory syncytial virus (RSV) in mice and macaques. Here we report the improvement of DS-Cav1 through iterative cycles of structure-based design that significantly increased the titer of RSV-protective responses. The resultant second-generation 'DS2'-stabilized immunogens have their F subunits genetically linked, their fusion peptides deleted and their interprotomer movements stabilized by an additional disulfide bond. These DS2 immunogens are promising vaccine candidates with superior attributes, such as their lack of a requirement for furin cleavage and their increased antigenic stability against heat inactivation. The iterative structure-based improvement described here may have utility in the optimization of other vaccine antigens. Iterative structure-based improvement of a fusion-glycoprotein vaccine against RSV.,Joyce MG, Zhang B, Ou L, Chen M, Chuang GY, Druz A, Kong WP, Lai YT, Rundlet EJ, Tsybovsky Y, Yang Y, Georgiev IS, Guttman M, Lees CR, Pancera M, Sastry M, Soto C, Stewart-Jones GB, Thomas PV, Van Galen JG, Baxa U, Lee KK, Mascola JR, Graham BS, Kwong PD Nat Struct Mol Biol. 2016 Aug 1. doi: 10.1038/nsmb.3267. PMID:27478931[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|