5kac

From Proteopedia

Jump to: navigation, search

Protein Tyrosine Phosphatase 1B P185G mutant, open state

Structural highlights

5kac is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.9Å
Ligands:CL, GOL, TRS
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PTN1_HUMAN Tyrosine-protein phosphatase which acts as a regulator of endoplasmic reticulum unfolded protein response. Mediates dephosphorylation of EIF2AK3/PERK; inactivating the protein kinase activity of EIF2AK3/PERK. May play an important role in CKII- and p60c-src-induced signal transduction cascades. May regulate the EFNA5-EPHA3 signaling pathway which modulates cell reorganization and cell-cell repulsion.[1] [2]

Publication Abstract from PubMed

Protein function originates from a cooperation of structural rigidity, dynamics at different timescales, and allostery. However, how these three pillars of protein function are integrated is still only poorly understood. Here we show how these pillars are connected in Protein Tyrosine Phosphatase 1B (PTP1B), a drug target for diabetes and cancer that catalyzes the dephosphorylation of numerous substrates in essential signaling pathways. By combining new experimental and computational data on WT-PTP1B and >/=10 PTP1B variants in multiple states, we discovered a fundamental and evolutionarily conserved CH/pi switch that is critical for positioning the catalytically important WPD loop. Furthermore, our data show that PTP1B uses conformational and dynamic allostery to regulate its activity. This shows that both conformational rigidity and dynamics are essential for controlling protein activity. This connection between rigidity and dynamics at different timescales is likely a hallmark of all enzyme function.

Conformational Rigidity and Protein Dynamics at Distinct Timescales Regulate PTP1B Activity and Allostery.,Choy MS, Li Y, Machado LE, Kunze MB, Connors CR, Wei X, Lindorff-Larsen K, Page R, Peti W Mol Cell. 2017 Feb 16;65(4):644-658.e5. doi: 10.1016/j.molcel.2017.01.014. PMID:28212750[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
No citations found

See Also

References

  1. Nievergall E, Janes PW, Stegmayer C, Vail ME, Haj FG, Teng SW, Neel BG, Bastiaens PI, Lackmann M. PTP1B regulates Eph receptor function and trafficking. J Cell Biol. 2010 Dec 13;191(6):1189-203. doi: 10.1083/jcb.201005035. Epub 2010, Dec 6. PMID:21135139 doi:10.1083/jcb.201005035
  2. Krishnan N, Fu C, Pappin DJ, Tonks NK. H2S-Induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Sci Signal. 2011 Dec 13;4(203):ra86. doi: 10.1126/scisignal.2002329. PMID:22169477 doi:10.1126/scisignal.2002329
  3. Choy MS, Li Y, Machado LE, Kunze MB, Connors CR, Wei X, Lindorff-Larsen K, Page R, Peti W. Conformational Rigidity and Protein Dynamics at Distinct Timescales Regulate PTP1B Activity and Allostery. Mol Cell. 2017 Feb 16;65(4):644-658.e5. doi: 10.1016/j.molcel.2017.01.014. PMID:28212750 doi:http://dx.doi.org/10.1016/j.molcel.2017.01.014

Contents


PDB ID 5kac

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools