5tzr

From Proteopedia

Jump to: navigation, search

GPR40 in complex with partial agonist MK-8666

Structural highlights

5tzr is a 1 chain structure with sequence from Escherichia virus T4 and Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.2Å
Ligands:1PE, MK6, MLI, NA, OLC
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ENLYS_BPT4 Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.[1] FFAR1_HUMAN Receptor for medium and long chain saturated and unsaturated fatty acids. Binding of the ligand increase intracellular calcium concentration and amplify glucose-stimulated insulin secretion. The activity of this receptor is mediated by G-proteins that activate phospholipase C. Seems to act through a G(q) and G(i)-mediated pathway.[2]

Publication Abstract from PubMed

Clinical studies indicate that partial agonists of the G-protein-coupled, free fatty acid receptor 1 GPR40 enhance glucose-dependent insulin secretion and represent a potential mechanism for the treatment of type 2 diabetes mellitus. Full allosteric agonists (AgoPAMs) of GPR40 bind to a site distinct from partial agonists and can provide additional efficacy. We report the 3.2-A crystal structure of human GPR40 (hGPR40) in complex with both the partial agonist MK-8666 and an AgoPAM, which exposes a novel lipid-facing AgoPAM-binding pocket outside the transmembrane helical bundle. Comparison with an additional 2.2-A structure of the hGPR40-MK-8666 binary complex reveals an induced-fit conformational coupling between the partial agonist and AgoPAM binding sites, involving rearrangements of the transmembrane helices 4 and 5 (TM4 and TM5) and transition of the intracellular loop 2 (ICL2) into a short helix. These conformational changes likely prime GPR40 to a more active-like state and explain the binding cooperativity between these ligands.

Structural basis for the cooperative allosteric activation of the free fatty acid receptor GPR40.,Lu J, Byrne N, Wang J, Bricogne G, Brown FK, Chobanian HR, Colletti SL, Di Salvo J, Thomas-Fowlkes B, Guo Y, Hall DL, Hadix J, Hastings NB, Hermes JD, Ho T, Howard AD, Josien H, Kornienko M, Lumb KJ, Miller MW, Patel SB, Pio B, Plummer CW, Sherborne BS, Sheth P, Souza S, Tummala S, Vonrhein C, Webb M, Allen SJ, Johnston JM, Weinglass AB, Sharma S, Soisson SM Nat Struct Mol Biol. 2017 Jul;24(7):570-577. doi: 10.1038/nsmb.3417. Epub 2017, Jun 5. PMID:28581512[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
No citations found

See Also

References

  1. Moussa SH, Kuznetsov V, Tran TA, Sacchettini JC, Young R. Protein determinants of phage T4 lysis inhibition. Protein Sci. 2012 Apr;21(4):571-82. doi: 10.1002/pro.2042. Epub 2012 Mar 2. PMID:22389108 doi:http://dx.doi.org/10.1002/pro.2042
  2. Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR Jr, Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem. 2003 Mar 28;278(13):11303-11. Epub 2002 Dec 19. PMID:12496284 doi:http://dx.doi.org/10.1074/jbc.M211495200
  3. Lu J, Byrne N, Wang J, Bricogne G, Brown FK, Chobanian HR, Colletti SL, Di Salvo J, Thomas-Fowlkes B, Guo Y, Hall DL, Hadix J, Hastings NB, Hermes JD, Ho T, Howard AD, Josien H, Kornienko M, Lumb KJ, Miller MW, Patel SB, Pio B, Plummer CW, Sherborne BS, Sheth P, Souza S, Tummala S, Vonrhein C, Webb M, Allen SJ, Johnston JM, Weinglass AB, Sharma S, Soisson SM. Structural basis for the cooperative allosteric activation of the free fatty acid receptor GPR40. Nat Struct Mol Biol. 2017 Jul;24(7):570-577. doi: 10.1038/nsmb.3417. Epub 2017, Jun 5. PMID:28581512 doi:http://dx.doi.org/10.1038/nsmb.3417

Contents


PDB ID 5tzr

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools