6b59

From Proteopedia

Jump to: navigation, search

Carbonic anhydrase II in complex with nitrogenous base-bearing benezenesulfonamide

Structural highlights

6b59 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.638Å
Ligands:CQS, DMS, GOL, ZN
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

CAH2_HUMAN Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:259730; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.[1] [2] [3] [4] [5]

Function

CAH2_HUMAN Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.[6] [7]

Publication Abstract from PubMed

Incorporation of the purine/pyrimidine moieties as tails to classical benzenesulfonamide scaffolds afforded two series of human (h) carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. The compounds were designed according to the molecular hybridization approach, in order to modulate the interaction with different CA isozymes and exploit the antitumor effect of uracil and adenine derivatives in parallel and synergic mode to the inhibition of the tumor-associated hCA IX. The sulfonamides were investigated as inhibitors of four isoforms, cytosolic hCA I/II and transmembrane hCA IV/IX. The inhibitory profiles were dependent on the length and positioning of the spacer connecting the two pharmacophores. X-ray crystallography demonstrated the binding mode of an inhibitor to hCA II and hCA IX-mimic. Compounds endowed with the best hCA IX inhibitory efficacy were evaluated for antiproliferative activity against HT-29 colon cancer cell lines. The in vitro results suggest multiple mechanisms of action are responsible for the compounds' cytotoxic efficacy.

Discovery of New Sulfonamide Carbonic Anhydrase IX Inhibitors Incorporating Nitrogenous Bases.,Nocentini A, Bua S, Lomelino CL, McKenna R, Menicatti M, Bartolucci G, Tenci B, Di Cesare Mannelli L, Ghelardini C, Gratteri P, Supuran CT ACS Med Chem Lett. 2017 Nov 21;8(12):1314-1319. doi:, 10.1021/acsmedchemlett.7b00399. eCollection 2017 Dec 14. PMID:29259754[8]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Venta PJ, Welty RJ, Johnson TM, Sly WS, Tashian RE. Carbonic anhydrase II deficiency syndrome in a Belgian family is caused by a point mutation at an invariant histidine residue (107 His----Tyr): complete structure of the normal human CA II gene. Am J Hum Genet. 1991 Nov;49(5):1082-90. PMID:1928091
  2. Roth DE, Venta PJ, Tashian RE, Sly WS. Molecular basis of human carbonic anhydrase II deficiency. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1804-8. PMID:1542674
  3. Soda H, Yukizane S, Yoshida I, Koga Y, Aramaki S, Kato H. A point mutation in exon 3 (His 107-->Tyr) in two unrelated Japanese patients with carbonic anhydrase II deficiency with central nervous system involvement. Hum Genet. 1996 Apr;97(4):435-7. PMID:8834238
  4. Hu PY, Lim EJ, Ciccolella J, Strisciuglio P, Sly WS. Seven novel mutations in carbonic anhydrase II deficiency syndrome identified by SSCP and direct sequencing analysis. Hum Mutat. 1997;9(5):383-7. PMID:9143915 doi:<383::AID-HUMU1>3.0.CO;2-5 10.1002/(SICI)1098-1004(1997)9:5<383::AID-HUMU1>3.0.CO;2-5
  5. Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS. Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat. 2004 Sep;24(3):272. PMID:15300855 doi:10.1002/humu.9266
  6. Briganti F, Mangani S, Scozzafava A, Vernaglione G, Supuran CT. Carbonic anhydrase catalyzes cyanamide hydration to urea: is it mimicking the physiological reaction? J Biol Inorg Chem. 1999 Oct;4(5):528-36. PMID:10550681
  7. Kim CY, Whittington DA, Chang JS, Liao J, May JA, Christianson DW. Structural aspects of isozyme selectivity in the binding of inhibitors to carbonic anhydrases II and IV. J Med Chem. 2002 Feb 14;45(4):888-93. PMID:11831900
  8. Nocentini A, Bua S, Lomelino CL, McKenna R, Menicatti M, Bartolucci G, Tenci B, Di Cesare Mannelli L, Ghelardini C, Gratteri P, Supuran CT. Discovery of New Sulfonamide Carbonic Anhydrase IX Inhibitors Incorporating Nitrogenous Bases. ACS Med Chem Lett. 2017 Nov 21;8(12):1314-1319. doi:, 10.1021/acsmedchemlett.7b00399. eCollection 2017 Dec 14. PMID:29259754 doi:http://dx.doi.org/10.1021/acsmedchemlett.7b00399

Contents


PDB ID 6b59

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools