Ras:SOS:Ras in complex with a small molecule activator
Structural highlights
6bvk is a 3 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
SOS1_HUMAN Defects in SOS1 are the cause of gingival fibromatosis 1 (GGF1) [MIM:135300; also known as GINGF1. Gingival fibromatosis is a rare overgrowth condition characterized by a benign, slowly progressive, nonhemorrhagic, fibrous enlargement of maxillary and mandibular keratinized gingiva. GGF1 is usually transmitted as an autosomal dominant trait, although sporadic cases are common.[1] Defects in SOS1 are the cause of Noonan syndrome type 4 (NS4) [MIM:610733. NS4 is an autosomal dominant disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. It is a genetically heterogeneous and relatively common syndrome, with an estimated incidence of 1 in 1000-2500 live births. Rarely, NS4 is associated with juvenile myelomonocytic leukemia (JMML). SOS1 mutations engender a high prevalence of pulmonary valve disease; atrial septal defects are less common.[2][3][4][5][6][7][8][9]
Function
SOS1_HUMAN Promotes the exchange of Ras-bound GDP by GTP.
Publication Abstract from PubMed
Deregulated RAS activity, often the result of mutation, is implicated in approximately 30% of all human cancers. Despite this statistic, no clinically successful treatment for RAS-driven tumors has yet been developed. One approach for modulating RAS activity is to target and affect the activity of proteins that interact with RAS, such as the guanine nucleotide exchange factor (GEF) son of sevenless homologue 1 (SOS1). Here, we report on structure-activity relationships (SAR) in an indole series of compounds. Using structure-based design, we systematically explored substitution patterns on the indole nucleus, the pendant amino acid moiety, and the linker unit that connects these two fragments. Best-in-class compounds activate the nucleotide exchange process at submicromolar concentrations in vitro, increase levels of active RAS-GTP in HeLa cells, and elicit signaling changes in the mitogen-activated protein kinase-extracellular regulated kinase (MAPK-ERK) pathway, resulting in a decrease in pERK1/2(T202/Y204) protein levels at higher compound concentrations.
Discovery of Aminopiperidine Indoles That Activate the Guanine Nucleotide Exchange Factor SOS1 and Modulate RAS Signaling.,Abbott JR, Hodges TR, Daniels RN, Patel PA, Kennedy JP, Howes JE, Akan DT, Burns MC, Sai J, Sobolik T, Beesetty Y, Lee T, Rossanese OW, Phan J, Waterson AG, Fesik SW J Med Chem. 2018 Jul 11. doi: 10.1021/acs.jmedchem.8b00360. PMID:29856609[10]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
↑ Hart TC, Zhang Y, Gorry MC, Hart PS, Cooper M, Marazita ML, Marks JM, Cortelli JR, Pallos D. A mutation in the SOS1 gene causes hereditary gingival fibromatosis type 1. Am J Hum Genet. 2002 Apr;70(4):943-54. Epub 2002 Feb 26. PMID:11868160 doi:S0002-9297(07)60301-2
↑ Roberts AE, Araki T, Swanson KD, Montgomery KT, Schiripo TA, Joshi VA, Li L, Yassin Y, Tamburino AM, Neel BG, Kucherlapati RS. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat Genet. 2007 Jan;39(1):70-4. Epub 2006 Dec 3. PMID:17143285 doi:ng1926
↑ Tartaglia M, Pennacchio LA, Zhao C, Yadav KK, Fodale V, Sarkozy A, Pandit B, Oishi K, Martinelli S, Schackwitz W, Ustaszewska A, Martin J, Bristow J, Carta C, Lepri F, Neri C, Vasta I, Gibson K, Curry CJ, Siguero JP, Digilio MC, Zampino G, Dallapiccola B, Bar-Sagi D, Gelb BD. Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat Genet. 2007 Jan;39(1):75-9. Epub 2006 Dec 13. PMID:17143282 doi:10.1038/ng1939
↑ Ko JM, Kim JM, Kim GH, Yoo HW. PTPN11, SOS1, KRAS, and RAF1 gene analysis, and genotype-phenotype correlation in Korean patients with Noonan syndrome. J Hum Genet. 2008;53(11-12):999-1006. doi: 10.1007/s10038-008-0343-6. Epub 2008, Nov 20. PMID:19020799 doi:10.1007/s10038-008-0343-6
↑ Hanna N, Parfait B, Talaat IM, Vidaud M, Elsedfy HH. SOS1: a new player in the Noonan-like/multiple giant cell lesion syndrome. Clin Genet. 2009 Jun;75(6):568-71. doi: 10.1111/j.1399-0004.2009.01149.x. Epub, 2009 May 5. PMID:19438935 doi:10.1111/j.1399-0004.2009.01149.x
↑ Longoni M, Moncini S, Cisternino M, Morella IM, Ferraiuolo S, Russo S, Mannarino S, Brazzelli V, Coi P, Zippel R, Venturin M, Riva P. Noonan syndrome associated with both a new Jnk-activating familial SOS1 and a de novo RAF1 mutations. Am J Med Genet A. 2010 Sep;152A(9):2176-84. doi: 10.1002/ajmg.a.33564. PMID:20683980 doi:10.1002/ajmg.a.33564
↑ Fabretto A, Kutsche K, Harmsen MB, Demarini S, Gasparini P, Fertz MC, Zenker M. Two cases of Noonan syndrome with severe respiratory and gastroenteral involvement and the SOS1 mutation F623I. Eur J Med Genet. 2010 Sep-Oct;53(5):322-4. doi: 10.1016/j.ejmg.2010.07.011. Epub , 2010 Jul 29. PMID:20673819 doi:10.1016/j.ejmg.2010.07.011
↑ Denayer E, Devriendt K, de Ravel T, Van Buggenhout G, Smeets E, Francois I, Sznajer Y, Craen M, Leventopoulos G, Mutesa L, Vandecasseye W, Massa G, Kayserili H, Sciot R, Fryns JP, Legius E. Tumor spectrum in children with Noonan syndrome and SOS1 or RAF1 mutations. Genes Chromosomes Cancer. 2010 Mar;49(3):242-52. doi: 10.1002/gcc.20735. PMID:19953625 doi:10.1002/gcc.20735
↑ Lepri F, De Luca A, Stella L, Rossi C, Baldassarre G, Pantaleoni F, Cordeddu V, Williams BJ, Dentici ML, Caputo V, Venanzi S, Bonaguro M, Kavamura I, Faienza MF, Pilotta A, Stanzial F, Faravelli F, Gabrielli O, Marino B, Neri G, Silengo MC, Ferrero GB, Torrrente I, Selicorni A, Mazzanti L, Digilio MC, Zampino G, Dallapiccola B, Gelb BD, Tartaglia M. SOS1 mutations in Noonan syndrome: molecular spectrum, structural insights on pathogenic effects, and genotype-phenotype correlations. Hum Mutat. 2011 Jul;32(7):760-72. doi: 10.1002/humu.21492. Epub 2011 Apr 28. PMID:21387466 doi:10.1002/humu.21492
↑ Abbott JR, Hodges TR, Daniels RN, Patel PA, Kennedy JP, Howes JE, Akan DT, Burns MC, Sai J, Sobolik T, Beesetty Y, Lee T, Rossanese OW, Phan J, Waterson AG, Fesik SW. Discovery of Aminopiperidine Indoles That Activate the Guanine Nucleotide Exchange Factor SOS1 and Modulate RAS Signaling. J Med Chem. 2018 Jul 11. doi: 10.1021/acs.jmedchem.8b00360. PMID:29856609 doi:http://dx.doi.org/10.1021/acs.jmedchem.8b00360