6g6z
From Proteopedia
Eg5-inhibitor complex
Structural highlights
Disease[KIF11_HUMAN] Defects in KIF11 are the cause of microcephaly with or without chorioretinopathy, lymphedema, or mental retardation (MCLMR) [MIM:152950]. An autosomal dominant disorder that involves an overlapping but variable spectrum of central nervous system and ocular developmental anomalies. Microcephaly ranges from mild to severe and is often associated with mild to moderate developmental delay and a characteristic facial phenotype with upslanting palpebral fissures, broad nose with rounded tip, long philtrum with thin upper lip, prominent chin, and prominent ears. Chorioretinopathy is the most common eye abnormality, but retinal folds, microphthalmia, and myopic and hypermetropic astigmatism have also been reported, and some individuals have no overt ocular phenotype. Congenital lymphedema, when present, is typically confined to the dorsa of the feet, and lymphoscintigraphy reveals the absence of radioactive isotope uptake from the webspaces between the toes.[1] Function[KIF11_HUMAN] Motor protein required for establishing a bipolar spindle. Blocking of KIF11 prevents centrosome migration and arrest cells in mitosis with monoastral microtubule arrays.[2] Publication Abstract from PubMedThe thiadiazole scaffold is an important core moiety in a variety of clinical drug candidates targeting a range of diseases. For example, the 2,4,5-substituted 1,3,4-thiadiazole scaffold is present in a lead compound and at least two clinical candidates targeting the human motor protein Eg5, against neoplastic diseases. An inhibitor named K858 has in vivo activity in various mouse xenografts whereas the clinical candidates (S)-ARRY-520 and (R)-Litronesib have entered clinical trials with the former one in phase III clinical trials either alone or in combination with a proteasome inhibitor against relapsed/refractory multiple myeloma. Astonishingly, structural data are lacking for all thiadiazole-containing Eg5 inhibitors. Here we report the structure determination of two crystal forms of the ternary Eg5-ADP-K858 complex, locking the motor in the so-called final inhibitor bound state, thus blocking ADP release, a crucial stage for Eg5 activity. K858 acts at the established allosteric inhibitor-binding pocket formed of helix alpha2, loop L5 and helix alpha3. The structure of the complex has far reaching consequences for thiadiazole containing Eg5 inhibitors. For example, we could rationalise the structure-activity relationship in the crucial 5-position of the thiadiazole scaffold and the complex will serve in the future as a basis for strucutre-based drug design. Crystal structure of the Eg5 - K858 complex and implications for structure-based design of thiadiazole-containing inhibitors.,Talapatra SK, Tham CL, Guglielmi P, Cirilli R, Chandrasekaran B, Karpoormath R, Carradori S, Kozielski F Eur J Med Chem. 2018 Jul 4;156:641-651. doi: 10.1016/j.ejmech.2018.07.006. PMID:30031975[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
Categories: Human | Large Structures | Kozielski, F | Talapatra, S K | Tham, C L | Cell cycle | Eg5 | Eg5-inhibitor | Kif11