| Structural highlights
Function
[GRIA2_RAT] Receptor for glutamate that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of bound agonist. In the presence of CACNG4 or CACNG7 or CACNG8, shows resensitization which is characterized by a delayed accumulation of current flux upon continued application of glutamate.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]
Publication Abstract from PubMed
The ionotropic glutamate receptor GluA2 is considered to be an attractive target for positive allosteric modulation for the development of pharmacological tools or cognitive enhancers. Here, we report a detailed structural characterization of two recently reported dimeric positive allosteric modulators, TDPAM01 and TDPAM02, with nanomolar potency at GluA2. Using X-ray crystallography, TDPAM01 and TDPAM02 were crystallized in the ligand-binding domain of the GluA2 flop isoform as well as in the flip-like mutant N775S and the preformed dimer L504Y-N775S. In all structures, one modulator molecule binds at the dimer interface with two characteristic hydrogen bonds being formed from the modulator to Pro515. Whereas the GluA2 dimers and modulator binding mode are similar when crystallized in the presence of l-glutamate, the shape of the binding site differs when no l-glutamate is present. TDPAM02 has no effect on domain closure in both apo and l-glutamate bound GluA2 dimers compared to structures without modulator.
Crystal Structures of Potent Dimeric Positive Allosteric Modulators at the Ligand-Binding Domain of the GluA2 Receptor.,Laulumaa S, Hansen KV, Masternak M, Drapier T, Francotte P, Pirotte B, Frydenvang K, Kastrup JS ACS Med Chem Lett. 2018 Nov 4;10(3):243-247. doi: 10.1021/acsmedchemlett.8b00369., eCollection 2019 Mar 14. PMID:30891120[15]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Everts I, Villmann C, Hollmann M. N-Glycosylation is not a prerequisite for glutamate receptor function but Is essential for lectin modulation. Mol Pharmacol. 1997 Nov;52(5):861-73. PMID:9351977
- ↑ Schwenk J, Harmel N, Zolles G, Bildl W, Kulik A, Heimrich B, Chisaka O, Jonas P, Schulte U, Fakler B, Klocker N. Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors. Science. 2009 Mar 6;323(5919):1313-9. doi: 10.1126/science.1167852. PMID:19265014 doi:10.1126/science.1167852
- ↑ Kato AS, Gill MB, Ho MT, Yu H, Tu Y, Siuda ER, Wang H, Qian YW, Nisenbaum ES, Tomita S, Bredt DS. Hippocampal AMPA receptor gating controlled by both TARP and cornichon proteins. Neuron. 2010 Dec 22;68(6):1082-96. doi: 10.1016/j.neuron.2010.11.026. PMID:21172611 doi:10.1016/j.neuron.2010.11.026
- ↑ Jin R, Horning M, Mayer ML, Gouaux E. Mechanism of activation and selectivity in a ligand-gated ion channel: structural and functional studies of GluR2 and quisqualate. Biochemistry. 2002 Dec 31;41(52):15635-43. PMID:12501192
- ↑ Sun Y, Olson R, Horning M, Armstrong N, Mayer M, Gouaux E. Mechanism of glutamate receptor desensitization. Nature. 2002 May 16;417(6886):245-53. PMID:12015593 doi:10.1038/417245a
- ↑ Jin R, Banke TG, Mayer ML, Traynelis SF, Gouaux E. Structural basis for partial agonist action at ionotropic glutamate receptors. Nat Neurosci. 2003 Aug;6(8):803-10. PMID:12872125 doi:10.1038/nn1091
- ↑ Armstrong N, Mayer M, Gouaux E. Tuning activation of the AMPA-sensitive GluR2 ion channel by genetic adjustment of agonist-induced conformational changes. Proc Natl Acad Sci U S A. 2003 May 13;100(10):5736-41. Epub 2003 May 2. PMID:12730367 doi:http://dx.doi.org/10.1073/pnas.1037393100
- ↑ Jin R, Clark S, Weeks AM, Dudman JT, Gouaux E, Partin KM. Mechanism of positive allosteric modulators acting on AMPA receptors. J Neurosci. 2005 Sep 28;25(39):9027-36. PMID:16192394 doi:25/39/9027
- ↑ Frandsen A, Pickering DS, Vestergaard B, Kasper C, Nielsen BB, Greenwood JR, Campiani G, Fattorusso C, Gajhede M, Schousboe A, Kastrup JS. Tyr702 is an important determinant of agonist binding and domain closure of the ligand-binding core of GluR2. Mol Pharmacol. 2005 Mar;67(3):703-13. Epub 2004 Dec 9. PMID:15591246 doi:10.1124/mol.104.002931
- ↑ Armstrong N, Jasti J, Beich-Frandsen M, Gouaux E. Measurement of conformational changes accompanying desensitization in an ionotropic glutamate receptor. Cell. 2006 Oct 6;127(1):85-97. PMID:17018279 doi:10.1016/j.cell.2006.08.037
- ↑ Kasper C, Pickering DS, Mirza O, Olsen L, Kristensen AS, Greenwood JR, Liljefors T, Schousboe A, Watjen F, Gajhede M, Sigurskjold BW, Kastrup JS. The structure of a mixed GluR2 ligand-binding core dimer in complex with (S)-glutamate and the antagonist (S)-NS1209. J Mol Biol. 2006 Apr 7;357(4):1184-201. Epub 2006 Jan 31. PMID:16483599 doi:10.1016/j.jmb.2006.01.024
- ↑ Sobolevsky AI, Rosconi MP, Gouaux E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature. 2009 Dec 10;462(7274):745-56. Epub . PMID:19946266 doi:10.1038/nature08624
- ↑ Rossmann M, Sukumaran M, Penn AC, Veprintsev DB, Babu MM, Greger IH. Subunit-selective N-terminal domain associations organize the formation of AMPA receptor heteromers. EMBO J. 2011 Mar 2;30(5):959-71. Epub 2011 Feb 11. PMID:21317873 doi:10.1038/emboj.2011.16
- ↑ Ahmed AH, Wang S, Chuang HH, Oswald RE. Mechanism of AMPA receptor activation by partial agonists: disulfide trapping of closed lobe conformations. J Biol Chem. 2011 Aug 16. PMID:21846932 doi:10.1074/jbc.M111.269001
- ↑ Laulumaa S, Hansen KV, Masternak M, Drapier T, Francotte P, Pirotte B, Frydenvang K, Kastrup JS. Crystal Structures of Potent Dimeric Positive Allosteric Modulators at the Ligand-Binding Domain of the GluA2 Receptor. ACS Med Chem Lett. 2018 Nov 4;10(3):243-247. doi: 10.1021/acsmedchemlett.8b00369., eCollection 2019 Mar 14. PMID:30891120 doi:http://dx.doi.org/10.1021/acsmedchemlett.8b00369
|