7r9c

From Proteopedia

Jump to: navigation, search

Cocrystal of BRD4(D1) with N,N-dimethyl-2-[(3R)-3-(5-{2-[2-methyl-5-(propan-2-yl)phenoxy]pyrimidin-4-yl}-4-[4-(trifluoromethyl)phenyl]-1H-imidazol-1-yl)pyrrolidin-1-yl]ethan-1-amine

Structural highlights

7r9c is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.5Å
Ligands:2IR, CL, EDO
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

BRD4_HUMAN Note=A chromosomal aberration involving BRD4 is found in a rare, aggressive, and lethal carcinoma arising in midline organs of young people. Translocation t(15;19)(q14;p13) with NUT which produces a BRD4-NUT fusion protein.[1] [2]

Function

BRD4_HUMAN Plays a role in a process governing chromosomal dynamics during mitosis (By similarity).

Publication Abstract from PubMed

Chemical probes for epigenetic proteins are essential tools for dissecting the molecular mechanisms for gene regulation and therapeutic development. The bromodomain and extra-terminal (BET) proteins are master transcriptional regulators. Despite promising therapeutic targets, selective small molecule inhibitors for a single bromodomain remain an unmet goal due to their high sequence similarity. Here, we address this challenge via a structure-activity relationship study using 1,4,5-trisubstituted imidazoles against the BRD4 N-terminal bromodomain (D1). Leading compounds 26 and 30 have 15 and 18 nM affinity against BRD4 D1 and over 500-fold selectivity against BRD2 D1 and BRD4 D2 via ITC. Broader BET selectivity was confirmed by fluorescence anisotropy, thermal shift, and CETSA. Despite BRD4 engagement, BRD4 D1 inhibition was unable to reduce c-Myc expression at low concentration in multiple myeloma cells. Conversely, for inflammation, IL-8 and chemokine downregulation were observed. These results provide new design rules for selective inhibitors of an individual BET bromodomain.

A Structure-based Design Approach for Generating High Affinity BRD4 D1-Selective Chemical Probes.,Cui H, Divakaran A, Hoell ZJ, Ellingson MO, Scholtz CR, Zahid H, Johnson JA, Griffith EC, Gee CT, Lee AL, Khanal S, Shi K, Aihara H, Shah VH, Lee RE, Harki DA, Pomerantz WCK J Med Chem. 2022 Jan 10. doi: 10.1021/acs.jmedchem.1c01779. PMID:35007061[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
No citations found

See Also

References

  1. French CA, Miyoshi I, Kubonishi I, Grier HE, Perez-Atayde AR, Fletcher JA. BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res. 2003 Jan 15;63(2):304-7. PMID:12543779
  2. French CA, Miyoshi I, Aster JC, Kubonishi I, Kroll TG, Dal Cin P, Vargas SO, Perez-Atayde AR, Fletcher JA. BRD4 bromodomain gene rearrangement in aggressive carcinoma with translocation t(15;19). Am J Pathol. 2001 Dec;159(6):1987-92. PMID:11733348 doi:10.1016/S0002-9440(10)63049-0
  3. Cui H, Divakaran A, Hoell ZJ, Ellingson MO, Scholtz CR, Zahid H, Johnson JA, Griffith EC, Gee CT, Lee AL, Khanal S, Shi K, Aihara H, Shah VH, Lee RE, Harki DA, Pomerantz WCK. A Structure-based Design Approach for Generating High Affinity BRD4 D1-Selective Chemical Probes. J Med Chem. 2022 Jan 10. doi: 10.1021/acs.jmedchem.1c01779. PMID:35007061 doi:http://dx.doi.org/10.1021/acs.jmedchem.1c01779

Contents


PDB ID 7r9c

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools