Structural highlights
8zcj is a 6 chain structure with sequence from Bos taurus, Homo sapiens, Oplophorus gracilirostris, Rattus norvegicus and Synthetic construct. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
|
| Method: | Electron Microscopy, Resolution 3.09Å |
| Ligands: | , , , |
| Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
GNAI1_HUMAN Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The G(i) proteins are involved in hormonal regulation of adenylate cyclase: they inhibit the cyclase in response to beta-adrenergic stimuli. The inactive GDP-bound form prevents the association of RGS14 with centrosomes and is required for the translocation of RGS14 from the cytoplasm to the plasma membrane. May play a role in cell division.[1] [2]
Publication Abstract from PubMed
Somatostatin receptor 5 (SSTR5) is highly expressed in ACTH-secreting pituitary adenomas and is an important drug target for the treatment of Cushing's disease. Two cyclic SST analog peptides (pasireotide and octreotide) both can activate SSTR5 and SSTR2. Pasireotide is preferential binding to SSTR5 than octreotide, while octreotide is biased to SSTR2 than SSTR5. The lack of selectivity of both pasireotide and octreotide causes side effects, such as hyperglycemia, gastrointestinal disturbance, and abnormal glucose homeostasis. However, little is known about the binding and selectivity mechanisms of pasireotide and octreotide with SSTR5, limiting the development of subtype-selective SST analog drugs specifically targeting SSTR5. Here, we report two cryo-electron microscopy (cryo-EM) structures of SSTR5-Gi complexes activated by pasireotide and octreoitde at resolutions of 3.09 A and 3.24 A, respectively. In combination with structural analysis and functional experiments, our results reveal the molecular mechanisms of ligand recognition and receptor activation. We also demonstrate that pasireotide preferentially binds to SSTR5 through the interactions between Tyr(Bzl)/(D)Trp of pasireotide and SSTR5. Moreover, we find that the Q(2.63), N(6.55), F(7.35) and ECL2 of SSTR2 play a crucial role in octreotide biased binding of SSTR2. Our results will provide structural insights and offer new opportunities for the drug discovery of better selective pharmaceuticals targeting specific SSTR subtypes.
Structural insights into somatostatin receptor 5 bound with cyclic peptides.,Li YG, Meng XY, Yang X, Ling SL, Shi P, Tian CL, Yang F Acta Pharmacol Sin. 2024 Jun 26. doi: 10.1038/s41401-024-01314-8. PMID:38926478[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Cho H, Kehrl JH. Localization of Gi alpha proteins in the centrosomes and at the midbody: implication for their role in cell division. J Cell Biol. 2007 Jul 16;178(2):245-55. PMID:17635935 doi:10.1083/jcb.200604114
- ↑ Johnston CA, Siderovski DP. Structural basis for nucleotide exchange on G alpha i subunits and receptor coupling specificity. Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):2001-6. Epub 2007 Jan 30. PMID:17264214
- ↑ Li YG, Meng XY, Yang X, Ling SL, Shi P, Tian CL, Yang F. Structural insights into somatostatin receptor 5 bound with cyclic peptides. Acta Pharmacol Sin. 2024 Jun 26. PMID:38926478 doi:10.1038/s41401-024-01314-8