User:Adéla Fejfarová/Sandbox 1

From Proteopedia

Jump to: navigation, search

ALAS2 in erythroid heme biosynthesis disorders

Enzyme 5’-aminolevulinic acid synthase (ALAS, EC 2.3.1.37) catalyzes the first step in the biosynthesis of heme molecule in alpha-proteobacteria and mitochondria of nonplant eukaryotes. In vertebrates there are two isoforms of the ALAS enzyme. The erythroid-specific ALAS2 located on chromosome X is expressed during erythropoiesis and mediates the biosynthesis of heme that carries oxygen in hemoglobin. Different mutations thorough the sequence of the enzyme lead to two ALAS2-associated blood disorders. Namely X-linked sideroblastic anemia (XLSA, MIM 300751) and X-linked protoporphyria (XLP, MIM 300752) caused typically by loss-of-function (enzyme deficiency) and gain-of-function (enzyme hyperactivity), respectively.

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. Eliot AC, Kirsch JF. Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu Rev Biochem. 2004;73:383-415. doi: 10.1146/annurev.biochem.73.011303.074021. PMID:15189147 doi:http://dx.doi.org/10.1146/annurev.biochem.73.011303.074021
  2. Eliot AC, Kirsch JF. Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu Rev Biochem. 2004;73:383-415. doi: 10.1146/annurev.biochem.73.011303.074021. PMID:15189147 doi:http://dx.doi.org/10.1146/annurev.biochem.73.011303.074021
  3. Dailey HA, Meissner PN. Erythroid heme biosynthesis and its disorders. Cold Spring Harb Perspect Med. 2013 Apr 1;3(4):a011676. doi:, 10.1101/cshperspect.a011676. PMID:23471474 doi:http://dx.doi.org/10.1101/cshperspect.a011676
  4. Chiabrando D, Mercurio S, Tolosano E. Heme and erythropoieis: more than a structural role. Haematologica. 2014 Jun;99(6):973-83. doi: 10.3324/haematol.2013.091991. PMID:24881043 doi:http://dx.doi.org/10.3324/haematol.2013.091991
  5. Hunter GA, Ferreira GC. Molecular enzymology of 5-aminolevulinate synthase, the gatekeeper of heme biosynthesis. Biochim Biophys Acta. 2011 Nov;1814(11):1467-73. doi:, 10.1016/j.bbapap.2010.12.015. Epub 2011 Jan 6. PMID:21215825 doi:http://dx.doi.org/10.1016/j.bbapap.2010.12.015
  6. doi: https://dx.doi.org/10.1016/S0021-9258(19)77371-2
  7. Dailey HA, Meissner PN. Erythroid heme biosynthesis and its disorders. Cold Spring Harb Perspect Med. 2013 Apr 1;3(4):a011676. doi:, 10.1101/cshperspect.a011676. PMID:23471474 doi:http://dx.doi.org/10.1101/cshperspect.a011676
  8. Hunter GA, Zhang J, Ferreira GC. Transient kinetic studies support refinements to the chemical and kinetic mechanisms of aminolevulinate synthase. J Biol Chem. 2007 Aug 10;282(32):23025-35. doi: 10.1074/jbc.M609330200. Epub 2007, May 7. PMID:17485466 doi:http://dx.doi.org/10.1074/jbc.M609330200
  9. Kadirvel S, Furuyama K, Harigae H, Kaneko K, Tamai Y, Ishida Y, Shibahara S. The carboxyl-terminal region of erythroid-specific 5-aminolevulinate synthase acts as an intrinsic modifier for its catalytic activity and protein stability. Exp Hematol. 2012 Jun;40(6):477-86.e1. doi: 10.1016/j.exphem.2012.01.013. Epub, 2012 Jan 21. PMID:22269113 doi:http://dx.doi.org/10.1016/j.exphem.2012.01.013
  10. Bailey HJ, Bezerra GA, Marcero JR, Padhi S, Foster WR, Rembeza E, Roy A, Bishop DF, Desnick RJ, Bulusu G, Dailey HA Jr, Yue WW. Human aminolevulinate synthase structure reveals a eukaryotic-specific autoinhibitory loop regulating substrate binding and product release. Nat Commun. 2020 Jun 4;11(1):2813. doi: 10.1038/s41467-020-16586-x. PMID:32499479 doi:http://dx.doi.org/10.1038/s41467-020-16586-x
  11. Taylor JL, Brown BL. Structural basis for dysregulation of aminolevulinic acid synthase in human disease. J Biol Chem. 2022 Mar;298(3):101643. doi: 10.1016/j.jbc.2022.101643. Epub 2022, Jan 28. PMID:35093382 doi:http://dx.doi.org/10.1016/j.jbc.2022.101643
  12. Bailey HJ, Bezerra GA, Marcero JR, Padhi S, Foster WR, Rembeza E, Roy A, Bishop DF, Desnick RJ, Bulusu G, Dailey HA Jr, Yue WW. Human aminolevulinate synthase structure reveals a eukaryotic-specific autoinhibitory loop regulating substrate binding and product release. Nat Commun. 2020 Jun 4;11(1):2813. doi: 10.1038/s41467-020-16586-x. PMID:32499479 doi:http://dx.doi.org/10.1038/s41467-020-16586-x
  13. Camaschella C. Recent advances in the understanding of inherited sideroblastic anaemia. Br J Haematol. 2008 Oct;143(1):27-38. doi: 10.1111/j.1365-2141.2008.07290.x. Epub, 2008 Jul 14. PMID:18637800 doi:http://dx.doi.org/10.1111/j.1365-2141.2008.07290.x
  14. Taylor JL, Brown BL. Structural basis for dysregulation of aminolevulinic acid synthase in human disease. J Biol Chem. 2022 Mar;298(3):101643. doi: 10.1016/j.jbc.2022.101643. Epub 2022, Jan 28. PMID:35093382 doi:http://dx.doi.org/10.1016/j.jbc.2022.101643
  15. Ducamp S, Kannengiesser C, Touati M, Garcon L, Guerci-Bresler A, Guichard JF, Vermylen C, Dochir J, Poirel HA, Fouyssac F, Mansuy L, Leroux G, Tertian G, Girot R, Heimpel H, Matthes T, Talbi N, Deybach JC, Beaumont C, Puy H, Grandchamp B. Sideroblastic anemia: molecular analysis of the ALAS2 gene in a series of 29 probands and functional studies of 10 missense mutations. Hum Mutat. 2011 Jun;32(6):590-7. doi: 10.1002/humu.21455. Epub 2011 Feb 24. PMID:21309041 doi:http://dx.doi.org/10.1002/humu.21455
  16. Bishop DF, Tchaikovskii V, Hoffbrand AV, Fraser ME, Margolis S. X-linked sideroblastic anemia due to carboxyl-terminal ALAS2 mutations that cause loss of binding to the beta-subunit of succinyl-CoA synthetase (SUCLA2). J Biol Chem. 2012 Aug 17;287(34):28943-55. doi: 10.1074/jbc.M111.306423. Epub, 2012 Jun 27. PMID:22740690 doi:http://dx.doi.org/10.1074/jbc.M111.306423
  17. Liu G, Guo S, Kang H, Zhang F, Hu Y, Wang L, Li M, Ru Y, Camaschella C, Han B, Nie G. Mutation spectrum in Chinese patients affected by congenital sideroblastic anemia and a search for a genotype-phenotype relationship. Haematologica. 2013 Dec;98(12):e158-60. doi: 10.3324/haematol.2013.095513. PMID:24323989 doi:http://dx.doi.org/10.3324/haematol.2013.095513
  18. Ducamp S, Kannengiesser C, Touati M, Garcon L, Guerci-Bresler A, Guichard JF, Vermylen C, Dochir J, Poirel HA, Fouyssac F, Mansuy L, Leroux G, Tertian G, Girot R, Heimpel H, Matthes T, Talbi N, Deybach JC, Beaumont C, Puy H, Grandchamp B. Sideroblastic anemia: molecular analysis of the ALAS2 gene in a series of 29 probands and functional studies of 10 missense mutations. Hum Mutat. 2011 Jun;32(6):590-7. doi: 10.1002/humu.21455. Epub 2011 Feb 24. PMID:21309041 doi:http://dx.doi.org/10.1002/humu.21455
  19. Abu-Zeinah G, DeSancho MT. Understanding Sideroblastic Anemia: An Overview of Genetics, Epidemiology, Pathophysiology and Current Therapeutic Options. J Blood Med. 2020 Sep 25;11:305-318. doi: 10.2147/JBM.S232644. eCollection 2020. PMID:33061728 doi:http://dx.doi.org/10.2147/JBM.S232644
  20. Abu-Zeinah G, DeSancho MT. Understanding Sideroblastic Anemia: An Overview of Genetics, Epidemiology, Pathophysiology and Current Therapeutic Options. J Blood Med. 2020 Sep 25;11:305-318. doi: 10.2147/JBM.S232644. eCollection 2020. PMID:33061728 doi:http://dx.doi.org/10.2147/JBM.S232644
  21. Taylor JL, Brown BL. Structural basis for dysregulation of aminolevulinic acid synthase in human disease. J Biol Chem. 2022 Mar;298(3):101643. doi: 10.1016/j.jbc.2022.101643. Epub 2022, Jan 28. PMID:35093382 doi:http://dx.doi.org/10.1016/j.jbc.2022.101643
  22. Balwani M. Erythropoietic Protoporphyria and X-Linked Protoporphyria: pathophysiology, genetics, clinical manifestations, and management. Mol Genet Metab. 2019 Nov;128(3):298-303. doi: 10.1016/j.ymgme.2019.01.020. Epub , 2019 Jan 24. PMID:30704898 doi:http://dx.doi.org/10.1016/j.ymgme.2019.01.020
  23. doi: https://dx.doi.org/10.1016/j.ajhg.2008.08.003
  24. Bishop DF, Tchaikovskii V, Nazarenko I, Desnick RJ. Molecular expression and characterization of erythroid-specific 5-aminolevulinate synthase gain-of-function mutations causing X-linked protoporphyria. Mol Med. 2013 Mar 5;19:18-25. doi: 10.2119/molmed.2013.00003. PMID:23348515 doi:http://dx.doi.org/10.2119/molmed.2013.00003
  25. Ducamp S, Schneider-Yin X, de Rooij F, Clayton J, Fratz EJ, Rudd A, Ostapowicz G, Varigos G, Lefebvre T, Deybach JC, Gouya L, Wilson P, Ferreira GC, Minder EI, Puy H. Molecular and functional analysis of the C-terminal region of human erythroid-specific 5-aminolevulinic synthase associated with X-linked dominant protoporphyria (XLDPP). Hum Mol Genet. 2013 Apr 1;22(7):1280-8. doi: 10.1093/hmg/dds531. Epub 2012 Dec, 20. PMID:23263862 doi:http://dx.doi.org/10.1093/hmg/dds531
  26. Balwani M, Desnick RJ. The porphyrias: advances in diagnosis and treatment. Blood. 2012 Nov 29;120(23):4496-504. doi: 10.1182/blood-2012-05-423186. Epub 2012, Jul 12. PMID:22791288 doi:http://dx.doi.org/10.1182/blood-2012-05-423186
  27. Balwani M. Erythropoietic Protoporphyria and X-Linked Protoporphyria: pathophysiology, genetics, clinical manifestations, and management. Mol Genet Metab. 2019 Nov;128(3):298-303. doi: 10.1016/j.ymgme.2019.01.020. Epub , 2019 Jan 24. PMID:30704898 doi:http://dx.doi.org/10.1016/j.ymgme.2019.01.020
  28. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  29. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644

Proteopedia Page Contributors and Editors (what is this?)

Adéla Fejfarová

Personal tools